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A B S T R A C T

A given causal system can be represented in a variety of ways. How do agents determine which
variables to include in their causal representations, and at what level of granularity? Using
techniques from Bayesian networks, information theory, and decision theory, we develop a
formal theory according to which causal representations reflect a trade-off between compression
and informativeness, where the optimal trade-off depends on the decision-theoretic value of in-
formation for a given agent in a given context. This theory predicts that, all else being equal,
agents prefer causal models that are as compressed as possible. When compression is associated
with information loss, however, all else is not equal, and our theory predicts that agents will favor
compressed models only when the information they sacrifice is not informative with respect to
the agent’s anticipated decisions. We then show, across six studies reported here (N=2,364) and
one study reported in the supplemental materials (N=182), that participants’ preferences over
causal models are in keeping with the predictions of our theory. Our theory offers a unification of
different dimensions of causal evaluation identified within the philosophy of science (propor-
tionality and stability), and contributes to a more general picture of human cognition according to
which the capacity to create compressed (causal) representations plays a central role.

1. Introduction

Scientists often aim to produce causal models of the world that balance informativeness with compression. That is, they aim to
model data-generating processes in a way that captures as much information about those processes as possible, while omitting
cumbersome or unnecessary details. For example, epidemiologists might produce a model of cancer rates in a population that treats
smoking as a binary variable representing whether or not a person smokes cigarettes, but without specifying the average number of
cigarettes the person smokes per day, and omitting additional background variables such as the person’s blood type. Ordinary agents
face an analogous challenge: in representing the social and physical world around us, each of us must determine which variables to
include in our causal models, and at what level of granularity. For example, a causal model of a toddler’s tantrums could include
whether they napped or not as a binary variable, or a finer-grained specification of the number of minutes they napped; it could include
the time of day, or omit this variable entirely. Any such choice of variables instantiates a particular trade-off between informativeness
and compression. How do people navigate this choice in building causal models of the world?

In this paper, we begin from the premise that ordinary agents, like scientists, build causal models of the world, and that these causal
models can be represented formally as Bayesian networks that support causal claims, causal explanations, predictions, and interventions
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(Gopnik and Tenenbaum, 2007; Griffiths et al., 2008; Pacer et al., 2013; Pearl, 2000; Spirtes et al., 2000). We then argue that these
ordinary agents, like scientists, face a crucial problem: choosing which variables to include in their causal models. Using the Bayes net
formalism and a decision-theoretic framework, we provide a formal theory of how to choose variables for a causal model so as to
achieve an optimal compression of the environment. We then corroborate our formal framework over the course of six experiments.

1.1. A Bayes net perspective on variable choice

In a Bayesian network, types of events are represented by random variables. These random variables are then related to each other
by functions that represent the causal relationships between types of events. For instance, in our epidemiological example, a binary
variable representing whether or not a person gets cancer will have its value determined by a function that takes as one of its arguments
the value of a binary variable denoting whether or not someone smokes.

By definition, each random variable in a Bayesian network can also be represented as a function defined on a set representing all of
the possible states of the network’s target system. We typically assume that these functions are many-to-one (i.e., that they are sur-
jective but not injective), such that random variables can be understood as compressions (often, massive compressions) of possibility
space. For the same data-generating process, there are many different sets of variables that we can define on possibility space, and each
choice of variables leads to a different causal model.1 For example, one model could use a binary variable for a person’s smoker status;
another could include a variable representing the total number of cigarettes smoked in a person’s life. In this case the former model is
more compressed, but the latter is more informative. However, the more informative model is not always the superior model. In some
cases, it may be no better-supported by the data than more compressed models, or the additional information that it encodes could be
irrelevant in a given context. For instance, an epidemiologist will likely be uninterested in whether smokers are more likely to smoke
with their right or left hand. Given these considerations, which model should be used in a given modelling context?

In philosophy of science, the question of how to make choices about which variable set to use when representing some system has
been termed the “variable choice problem” (Woodward, 2016b). More precisely, the variable choice problem is the problem of
determining which normative standards allow us to distinguish between appropriate choices of variables and cumbersome, unnatural
choices of variables in contexts where empirical adequacy does not on its own militate in favor of one variable set or another. In this
paper, we are especially concerned with versions of the variable choice problem that introduce a trade-off between compression and
informativeness. As we discuss in the next section, this is a trade-off that arises across a number of areas in cognition and beyond.

1.2. The case for compression

The importance of compression for understanding one’s environment is well-established within cognitive science. Rosch (1978)
argues that classifying types of objects or events in one’s environment requires one to balance the need for informative classification (i.
e., maximal informativeness, which introduces pressure towards fine-grained categories) against a need for “cognitive economy” (i.e.,
less demanding representations, which introduces a pressure towards coarser representations) (see also Chater and Vitányi, 2003).
This pressure towards cognitive economy in classification can be understood as a pressure towards compressed representations of one’s
environment, where this includes causal representations (see also Fauconnier and Turner, 2008; Murphy, 2004). Keil (2006) argues
further that understanding how agents achieve optimal levels of compression in causal representations of their environment is crucial
for understanding how those agents explain observed events. For example, if an agent knows that failing to discard old food attracts
pests, then that agent can exploit their knowledge of this causal relationship to explain the presence of pests when it occurs, and to
intervene on their environment to avoid attracting pests in the future. This agent does not need to separately store a complex causal
model of the relationship between different types of food (e.g., grains, vegetables, or meat) and the presence or absence of pests. Thus,
compression allows for the recognition of high-level patterns of causal dependence; this accounts for the central role that compression
plays in more general cognitive processes such as sense-making and understanding (see also Kirfel et al., 2021; Marzen and DeDeo,
2017; Pacer and Lombrozo, 2017; Wilkenfeld, 2019; Wojtowicz et al., 2021). Finally, Waldmann and Hagmayer (2006) show that
people not only group objects together when they infer that they have similar causal effects, but also assume that objects have similar
causal effects once they have been grouped together (see also Buchsbaum et al., 2015; Gopnik and Sobel, 2000).

In sum, there is a psychological and philosophical consensus that compression and causal explanation are closely related, and that
our choice of variables for causal models often involves a trade-off between informativeness and compression. However, what is
missing from this discussion is a precise quantification of the trade-off between informativeness and compression in Bayesian net-
works, as well as a systematic treatment of the value of the information contained in a Bayesian network for a given agent in a given
context.

1.3. Outline of a theoretical framework and empirical hypotheses

Here, we provide a formal theory that quantifies the trade-off between compression and information loss that is often inherent in
choices between variable sets in causal modeling. We then test this foundational framework empirically. Next, we show how this trade-

1 Note that we do not assume here that there is a unique, most fine-grained representation of a given data-generating process. Rather, we take the
fundamental nature of a data-generating process to be represented by a probability space, with respect to which the random variables in a causal
model are measurable. See Appendix A for more details on how the variables in a causal model are defined with respect to a probability space.
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off can additionally incorporate considerations about the value of information, reflecting the fact that not all information is equally
valuable for a particular agent facing particular decisions. This allows for more compressed causal models that, though they sacrifice
informativeness relative to some more detailed model, are nevertheless optimal for a given agent in a given context, because the
information lost in compression has no decision-theoretic value for the agent who uses the model to explain and intervene upon their
environment. Having developed this more detailed formal framework, we also test it experimentally.

Importantly, on the picture of causal cognition that we use in this paper, we do not presuppose that agents generate a single,
complete causal representation of their environment from raw data. Rather, we take it that agents approach their environment with a
fragmented and revisable picture of the causal structure of the world. When asked to engage in explicit causal reasoning (e.g., when
asked to evaluate the quality of a causal claim, or to generate a causal explanation or description based on data), agents refine this
fragmented causal structure and make salient a specific, better-defined causal representation of their environment.

Based on our formal framework, and with this picture of flexible causal representation in the background, we obtain evidence
consistent with the following three hypotheses:

H1: In general, people treat compression as a positive feature of a causal representation; all else being equal,2 the more
compressed a given representation is, the better.
H2. Compression can come at the cost of informativeness, and so, all else being equal, the optimal causal representation will
achieve a balance of compression and informativeness.
H3: When people are asked to select a causal representation in the context of a particular decision problem, their tolerance for
information loss in achieving a more compressed causal claim is moderated by the decision-theoretic value of the information
that is lost. That is, when the information that is lost in moving to a more compressed causal claim is not decision-relevant, that
information can be sacrificed without sacrificing the overall quality of a causal representation.

The remainder of the paper proceeds as follows. First, we review prior work (primarily from philosophy) on two questions about
variable choice with implications for the compression of causal claims. These questions concern the granularity of selected variables
(this is reflected in a claim’s so-called “proportionality”) and the choice of which variables to include (this is reflected in a claim’s so-
called “stability”). We then introduce a way to formalize both proportionality and stability in terms of the amount of information lost in
the move from one causal model to another. This framework allows us to test our first two hypotheses (H1 and H2) empirically, which
we do in Experiments 1–2. In Experiment 3, we rule out an alternative interpretation, showing that a causal contrast theory due to Lien
and Cheng (2000) does not predict results that our formal theory is able to successfully accommodate.

Next, we consider how trade-offs between informativeness and compression are moderated by an agent’s interests. In particular,
information loss could be irrelevant to an agent in a given environment if the lost information would not affect their decisions.
Addressing such cases requires extending our formal framework to incorporate the decision-theoretic value of information. After
introducing the relevant theory and formalization, we again turn to human judgments to test our third hypothesis (H3) in Experiments
4–6. Specifically, we test the effect of the value of information on the trade-off between informativeness and compression in the
evaluation (Experiment 4), generation (Experiment 5), and representation (Experiment 6) of causal claims.

Taken together, the paper makes the following novel contributions. On a theoretical level, our framework offers a novel, formal
measure of the information lost in moving from one causal model to another, whether that loss is realized through changes in pro-
portionality or stability. In so doing, our framework offers the first unified account of two dimensions of causal evaluation (propor-
tionality and stability) that have previously received independent treatment. Our formalization also allows us to incorporate the
decision-theoretic value of information, resulting in a new solution to the variable selection problem in building causal models.
Empirically, we offer novel evidence that humans trade off informativeness and compression in evaluating causal claims, and
moreover that the evaluation and production of causal claims is sensitive to the decision-theoretic value of information. We find no
evidence that these trade-offs are handled differently when compression is achieved through changes in proportionality versus sta-
bility, lending empirical support to our formal unification. Finally, our findings contribute to a more general picture of human
cognition as balancing tradeoffs between informativeness and compression in context-sensitive ways that take into account the value
of information for a given agent in a given context.

Throughout our experiments, we occasionally consider causal relationships in which one cause can act as a moderator of the
relationship between another cause and its effect. While our framework does not only handle these cases, the fact that it is able to
handle them speaks to its advantages over other frameworks, such as the PowerPC theory of Cheng (1997), which generates pre-
dictions about human causal judgments only in cases where candidate causes are antecedently assumed to be independent of each
other.

1.4. Dimensions for comparing causal claims across compressions

On its own, the Bayesian network approach to causal representation treats causation as a binary relation; two variables are either
causally related or they are not, and so the corresponding causal claim (e.g., “smoking causes cancer”) is either appropriate or it is not.
However, we take it that one can nevertheless make graded distinctions between causal claims along a large number of different

2 Throughout this paper, by “all else being equal,” we mean holding fixed all features of the causal structure of a system. This includes the
interventional probability distributions over effects given causes and the decision-theoretic context in which an agent finds themselves, apart from
those features explicitly stated to vary.
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dimensions, in keeping with experimental work on causal judgement (e.g., Cheng, 1997; Gerstenberg et al., 2021; Icard et al., 2017;
Lombrozo, 2007, 2010; Morris et al., 2018; O’Neill et al., 2021, 2022; Quillien, 2020; Spellman, 1997). In our framework, we consider
two dimensions along which causal models can vary, corresponding to the following two questions about variable choice in building a
causal model: i) At what level of granularity should a variable be defined?, and ii) Which variables should be included in a causal
model?

These two questions correspond to two graded dimensions that have been discussed in the philosophy literature on causation,
especially by Woodward (2008, 2010, 2016a, 2016b, 2021a, 2021b), though by others as well (e.g., Blanchard, Vasilyeva, & Lom-
brozo, 2018; Bourrat, 2021; DiMarco, 2021; Franklin-Hall, 2016; Gebharter and Eronen, 2021; Harbecke, 2021; Hoffmann-Kolss,
2014; List and Menzies, 2009; Ross, 2015; Weslake, 2013). These dimensions are proportionality and stability. A causal claim’s ‘pro-
portionality’ depends on the extent to which it is informative about how possible changes to the cause would result in changes in its
effect. Since coarse-graining or refining variables that stand in causal relationships to one another can change the proportionality of
causal claims, the concept of proportionality offers a partial answer to the question, “at what level of granularity should a variable be
represented?” By contrast, ‘stability’ refers to the degree to which a causal relationship is insensitive to changes in the values of
unspecified background variables, and thus offers a partial answer to the question, “which variables should be included in a causal
model?” Below, we describe both proportionality and stability in greater detail.

1.5. Proportionality

Proportionality is described by Woodward as the degree to which a causal claim of the form ‘C causes E,’ where C and E are
variables in a causal structure, is stated at the “level [of causal description] that is most informative about the conditions under which
the effect will and will not occur’’ (2021a, p. 389). For Woodward, the hierarchy of levels of description with which a causal rela-
tionship can be stated corresponds to a sequence of “vertically” related causal variables, where each causal variable in the sequence is a
coarsening of the previous causal variables (2021a, p. 371). The standard example of a hierarchy of levels of description that differ with
respect to their proportionality comes from Yablo (1992). Consider a pigeon who has been trained to peck at all and only red targets. In
a causal model of a system containing this pigeon and various targets, one might have a variable C with the range of values {red target,
non-red target}, and another variable E with the range of values {pigeon pecks, pigeon does not peck}. To be an accurate represen-
tation of the underlying data-generating structure, the model would have to be such that C is a cause of E. However, one could also
generate a causal model in which C is replaced with a variable C′with the range of values {scarlet target, non-scarlet red target, non-red
target}. Here, accuracy would also demand that we say that C′ is a cause of E, since some changes in the value of C′ lead to changes in
the value of E; changing C′ from either of its first two values to its third, and vice versa, leads to changes in the value of E.

According to Woodward’s definition, the claim ‘C causes E’ has the same level of proportionality as the claim ‘C′ causes E.’ This is
because a function specifying how changes in C bring about changes in E would give an agent all the information that they need to
appropriately manipulate the effect, as would a function specifying how changes in C′ bring about changes in E. However, ‘C causes E’
achieves a more compressed representation of the data-generating process than ‘C′ causes E.’ This is because C is a coarsening of C′. That
is, it defines a strictly more general equivalence class on possibility space: any scarlet target or non-scarlet red target is still a red target.
So, to the extent that we aim to optimize proportionality in our causal representations, we are licensed to use compressed represen-
tations when those compressions do not result in a reduction in proportionality, as argued in Woodward (2021b).3 If the pigeon had
instead been trained to peck at scarlet targets (and not other red targets), then the claim ‘C′ causes E’ would be more proportional than
‘C causes E,’ because the former would be more informative about the conditions under which the effect will and will not occur (i.e.,
that it will occur for red targets that are scarlet, but not for red targets that are not scarlet).

When testing the influence of proportionality in people’s evaluations of causal claims, it makes sense to consider causal models in
which compression is achieved by coarsening the range of a particular causal variable. Consider a causal claim C′ → E that is embedded
within a given causal model. If we replace C′ with a coarsening C, but leave the rest of the model unchanged, then we compress the
model by replacing a variable with its coarsening. We can then assess how much information about the likely value of E is conveyed by
changes in C in this more compressed model, as compared to how much information about likely values of E is conveyed by changes in
C′ in the less compressed model. This tells us how proportional the claim C→E is, as compared to the claim C′ → E. Thus, evaluations of
the relative proportionality of causal claims involve comparisons of more and less compressed causal models of the same data-
generating process. In what follows, this idea will be made mathematically precise.

To date, little empirical work has considered proportionality as a relevant dimension in people’s evaluations of causal claims. Of
most direct relevance, Lien and Cheng (2000) offer evidence that agents prefer proportional causal claims. Specifically, they show that
people prefer to give causal explanations that “explain as much as possible with as few causal rules as possible,” (p. 88). By “causal
rules,” they mean mappings from values of a causal variable to values of an effect variable. This preference for less informationally
detailed causal relations tracks a preference for more coarse-grained explanations in cases where fine-graining only serves to

3 In Yablo’s original paper, as well as in earlier work on this topic by Woodward (2010), the definition of proportionality was such that the
variable with the range of values {red target, non-red target} would be said to be a more proportional cause of the variable with range of values
{pigeon pecks, pigeon does not peck} than the variable with range of values {scarlet target, non-scarlet red target, non-red target}. However, as
Woodward (2021a) notes, the amount of information that the value of either of these causal variables conveys about the value of the effect variable
is equal; specifying the value of either causal variable tells us what the value of the effect variable would be. For this reason, we follow the later
Woodward in treating the two variables as equally proportional, with this licensing the choice of the more coarse-grained variable.
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complicate the description of the relation between cause and effect. Thus, they find that people prefer just those kinds of coarsenings
that are licensed by a preference for more proportional causal claims. However, their work does not address the question of whether
and how judgments of more or less proportional causal claims instantiate a trade-off between compression and informativeness. In
other relevant work, Bechlivanidis et al. (2017) report a preference for concreteness over abstraction in causal explanation (i.e., people
favor explanations with finer-grained variable choices), even in cases where such concreteness does not add any information that
would be relevant for predicting the effect in question. While this suggests that people may ignore compression in favor of greater
detail under some conditions, their task involved evaluating causal explanations for token events, not type-level causal claims (see also
Aronowitz and Lombrozo, 2020, for potentially relevant discussion). We take explaining why a particular event happened to be a
cognitively distinct task from identifying patterns in the causal relations between types of events, such that the norms governing the
former might be different from those governing the latter.4 Our focus here is on the latter cognitive task.

1.6. Stability

Stability is the extent to which a causal claim is sensitive to changes in unspecified background conditions (Woodward, 2010).5 As
an example of a highly stable causal relationship, consider “smoking causes lung cancer.” Across a wide range of plausible changes to
other features of the world, people who smoke are more likely to get lung cancer than those who do not, and this statistical association
is due to a causal relationship between smoking and lung cancer. By contrast, consider Woodward’s example of a binary variable C
representing whether or not a person has a particular genetic mutation that typically results in dyslexia, and another binary variable E
denoting whether or not that person eventually learns to read. Suppose that there is widespread failure to address and correct early
reading failures in dyslexic children. Under these conditions, the causal claim ‘C causes E’ would hold; the presence or absence of the
genetic mutation would lead to changes in the likelihood of a person learning to read. However, this claim is highly unstable. If we alter
the background conditions so that dyslexia is treatable and is treated (as, in fact, it often is), then the causal effect of the genetic
mutation on the probability of one’s learning to read is greatly diminished.

When we compress a causal model by removing a set of variables, we can regard the removed variables as background conditions,
and assess the stability of the causal relationships that remain after compression by observing how well they are preserved even as
background conditions are removed. Whether a variable is designated as a background condition as opposed to a causal variable of
interest is ultimately a distinction that we impose on the model, rather than one that is dictated by the nature of the system being
modelled. That is, we can stipulate that a particular relationship C→E in a causal model is of interest, and designate other variables in
the model as background conditions.6 We can then assess the stability of the relationship C→E by compressing the model in which it is
embedded so as to remove the background conditions, and then measuring the degree to which changes in the value of C still result in
changes in the probability distribution over E. Thus, as in the case of proportionality, we can measure the stability of a causal claim by
comparing how much information about the likely value of the effect variable is conveyed by changes in the causal variable when the
claim is embedded in a more or less compressed causal model. This too will be made more mathematically precise in what follows.

Prior work offers some direct evidence that people favor causal claims that are more stable over those that are less stable. Spe-
cifically, Vasilyeva et al. (2018) provide evidence that people prefer more stable causal claims even when other dimensions of causal
variation (such as causal strength) are carefully controlled. As with proportionality, however, this empirical work does not address the
question of whether and how judgments of more or less stable causal claims instantiate a trade-off between compression and
informativeness.

In sum, both proportionality and stability can be assessed by comparing how informative changes in a causal variable are with
respect to likely values of an effect variable across more or less compressed causal models in which the cause-effect relationship is
embedded. This suggests that proportionality and stability are actually two species of the same genus. That is, both proportionality and
stability are measures of how much information a causal relationship preserves across different types of compression. To test this
hypothesis, in our experiments we manipulate whether participants are put in scenarios in which a compression of the implicit causal
model involves coarsening a causal variable or eliding a background condition. Across multiple experiments, while we find evidence
that varying the amount of information lost in compression affects peoples’ judgments about the aptness of a causal representation, we
find no evidence for an effect of varying whether compression involves coarsening a causal variable or eliminating a background

4 This is not to say that these tasks are entirely unrelated. For example, seeking an explanation for a particular event might lead someone to
identify patterns in the causal relations between types of events, and beliefs about such causal relations surely constrain explanations for particular
events. Our point here is simply that finding a preference for more detailed descriptions in some explanations for particular events does not imply a
preference for finer-grained specifications of type-level causal relationships. To illustrate, the task of explaining why a particular student failed a test
or why a particular tree stopped bearing fruit is a different cognitive activity from finding the right level of granularity for the variables used in
stating theories about broad causal patterns like ‘studying causes good performance on tests’ or ‘poisonous fungi cause trees to stop bearing fruit.’
Our focus in this paper is on the latter sort of cognitive activity, rather than the former. See Lombrozo and Vasilyeva (2017) for a discussion of causal
explanation.

5 By “unspecified” background conditions, we mean those conditions that are not explicitly part of the causal claim. For example, the stability of
the claim “smoking causes lung cancer” depends on its persistence across changes in whether a person also lives in a high-air-pollution environment,
but the stability of the claim “smoking and living in a high-air pollution environment causes lung cancer” does not, since in the latter case the
amount of air pollution in the environment is specified in the causal claim.

6 See Watson and Silva (2022) for an example from the machine learning literature in which background and foreground causal variables are
distinguished by stipulation, with fruitful results.
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condition. Thus, our unified analysis of proportionality and stability is in keeping with the findings of our experiments, but represents
an important departure from prior work within philosophy, which has sometimes aimed to offer a formalization of stability and/or
proportionality (e.g., Pocheville et al., 2017), but without offering a unifying framework for both.

1.7. Formalizing information loss due to compression

In this section, we formalize our notion of information loss due to compression, and how it can be used to evaluate both the
proportionality and the stability of causal claims. (Our formalization here is given at a relatively high level of abstraction; see
Appendix A for a more complete presentation in the language of graphical causal models. On the other hand, readers who prefer to
move directly to an empirical test of hypotheses H1-H3 can skip to the section titled “Motivation for Experiments 1–2.”) As a pre-
liminary point, note that both a set of causal variables C and an effect variable E are random variables measurable with respect to the
same probability space. Moreover, we assume that both random variables are situated within a Bayesian network. That is, there is an
acyclic set of directed edges connecting the random variables, representing causal relationships between them. Importantly, this
graphical structure satisfies the Markov condition with respect to the probability distribution over the variables in the graph: all
variables are independent of their non-descendants, conditional on their parents. This setting allows us to calculate the probability
distribution over E given each possible intervention setting a set of variables C to each of its possible sets of values, in the style of Pearl
(2000). We denote the probability that E takes a value e, given that C is set to a vector of values c via intervention, using the notation
p(e|do(c)). We define the causal mutual information between C and E as follows:

CMI(C,E) =
∑

c,e
q(c)p(e|do(c) )log2

p(e|do(c) )
p(e)

,

where q is a probability distribution over possible interventions on C and c and e are possible values of C and E, respectively.7 Note that
this is just the standard definition of mutual information found in Shannon (1948), with interventional conditional probabilities
substituted for conditional probabilities. As such, it measures the average amount of information that any possible intervention on a set
of causal variables communicates about which of any possible values the effect variable will take. This makes it a measure not of the
informativeness of any one causal claim, but rather a measure of the informativeness, with respect to effect variable E, of an entire
causal model containing causal variables C.

We aim to define a lexical notion of compression that allows us to meaningfully state that one set of variables Ĉ is more com-
pressed than another set C. Intuitively, we want the relation between more and less compressed variable sets to imply that any
distinction captured in the more compressed variable set Ĉ is also captured in the less compressed variable set C, but that C can contain
distinctions that are not captured in Ĉ. To this end, we begin by noting that for any set of causal variables C, we can define a surjective
but not injective compression function σ from the range of C into another set. This yields a set of variables Ĉ whose set of possible
values is the range of the function σ. Going forward, we will say that such a variable set Ĉ is a compression of C. We stipulate that for
any vector of values ĉ, the probability q(ĉ) is given by the equation

∑
c∈σ− 1(ĉ)q(c). Importantly, any probability distribution q over

interventions and any other probability distribution p must satisfy the constraint that p(e|do(ĉ) ) =
∑

c∈σ− 1(ĉ)p(e|do(c) ) q(c)
q(̂c)

. In other

words, the probability that E=e given a coarse-grained intervention setting Ĉ to ĉ is given by the average, according to q, of each
interventional conditional probability p(e|do(c)) for each c ∈ σ− 1(ĉ). Having made these stipulations, we arrive at a lexical,
comparative measure of compression: one set of variables Ĉ is more compressed than another set C if there is a surjective but not
injective compression function σ from the range of C to the range of Ĉ.8 In Appendix A, we define the compression relationship be-
tween variables more rigorously, but the definition here is sufficient for expositional purposes.

We are now in a position to define the amount of information about an effect variable that is lost in the move from a less compressed
to a more compressed set of causal variables. We define this quantity as follows:

7 The idea of a probability distribution over possible interventions is non-standard, though it does have some precedent in the causal inference
literature (Pearl, 1994). In particular, it is necessary to define the information capacity of a causal channel in a way that incorporates an inter-
ventional understanding of causation (Ay and Polani, 2008). Where q ranges over the values of multiple variables, we assume that all variables are
intervened upon. That is, q does not allow for the possibility of intervening on only some variables.

8 On this lexical measure, it only makes sense to say that one set of variables is more/less compressed than another if the first is a compression of
the second or vice versa. We deliberately do not provide a more general measure of compression as such a measure will invariably vitiate on
questions not directly relevant to our interests here. For instance, a measure of how compressed the variable set C is that uses the entropy of C will
be sensitive to the prior distribution over C, but it is unclear why the likelihood that different values of C occur should be relevant to how com-
pressed C is. On the other hand, if we measure how compressed C is by simply counting the number of variable combinations, we lose the ability to
say (for example) that a countably infinite discretization of the unit interval results in a more compressed representation. Ultimately, we are
interested here in agents’ preferences between nested representations of the same causal processes, and so we leave to one side a more general
measurement of compression. We believe that comparisons between nested representations deserve special attention, since our choices between
different nested representations ultimately determine whether or not any two events observed in our environment should be treated as instantiations
of the same causal kind.
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L (C, Ĉ, E) = CMI(C,E) − CMI(Ĉ,E)

Thus, the amount of information about E that is lost in the move from the less compressed causal representation C to the more
compressed representation Ĉ is equal to the difference between the causal mutual information that C provides about E and the causal
mutual information that Ĉ provides about E. Following Shannon (1948), one should measure information loss in terms of the number
of bits of information lost in the move from a less compressed representation to a more compressed one. In what follows, we will use
this equation to derive qualitative predictions about when people will prefer more or less compressed causal representations of their
environment, which we then confirm experimentally.

We focus on qualitative comparisons between participants and our model because our goal is to understand the conditions under
which people prefer more compressed causal representations of their environment, and our measure provides a principled basis for
tractably deriving predictions. Our aim is not to directly model the mechanisms by which people estimate compression, and so we leave
open the possibility that other measures of compression can be used to derive similar predictions, and may offer more plausible ac-
counts of human cognition at an algorithmic level. Having said this, in what follows we will note some respects in which salient rivals
to our framework are less able to explain our data.

1.8. Measuring proportionality using information loss

Having formalized information loss due to compression, we can apply our framework to the compression achieved by replacing a
causal variable C with a more compressed variable Ĉ and leaving all other variables unchanged. By comparing the amount of in-
formation that C communicates about some effect variable E to the amount of information that Ĉ communicates about the same
variable E, we can measure the amount of information that is lost in this compression. This corresponds to a comparison of the causal
claims ‘C causes E’ and ‘Ĉ causes E’ with respect to their proportionality.

More precisely, let C = (C1,⋯,Cn) be a sequence of causal variables, with each Ci a compression of all variables Cj<i. We then say
that, in the context of such a sequence, a variable Ci is proportionalwith respect to an effect variable E to the extent that L

( {
Cj
}
, {Ci},

E
)

is relatively small for all j < i, where what counts as “relatively” small is assessed with respect to the amount of information that is
lost as each causal variable in the sequence C = (C1,⋯,Cn) is replaced with a more coarse-grained alternative. That is, proportional
choices of causal variables are those that preserve information about the conditions under which an effect variable E will change its
value, as compared to less compressed alternatives. Note that in this paper we only consider comparisons of proportionality between
causal claims with different causal variables and a common effect variable, though one can in principle compare causal relationships
that differ with respect to both cause and effect in terms of proportionality. We expect that our use of information loss to measure
proportionality generalizes to such comparisons.9

1.9. Measuring stability using information loss

Our formalization of information loss due to compression can also be applied to compressions achieved through the omission of
background variables. Recall from our earlier discussion that we can measure the stability of a causal relationship C→E embedded in a
particular causal Bayes net by removing a set of variables B from that Bayes net and assessing how much information is lost in the move
from the original Bayes net to the Bayes net that is created by removing the background variables. We stipulate that the variables in a
set B are background variableswith respect to a causal relationship C→E if and only if removing all variables in B and all edges going
into or out of the variables in B creates a Bayesian network that still satisfies the Markov condition. The notion of causal stability can
now be made precise, using our proposed measure of information loss. Specifically, we will say that the causal relationship between C
and E is stable with respect to background condition B to the extent that the value of L ({C,B}, {C}, E) is low. That is, the relationship
C→E is stable with respect to B to the extent that the average amount of information about E that is communicated by interventions on
both C and the variables in B is similar to the average amount of information about E that is communicated solely by interventions on
C. Note that we assert only this monotonic relationship between L ({C,B}, {C}, E) and stability, and make no claim about exactly how
low L ({C,B}, {C},E) has to be for the relationship C→E to be sufficiently stable for a given person to eschew any mention of the
background variable B.

1.10. Relationship to existing approaches

Our framework is not the first to use information theory to quantify properties of causal relationships. Previous work in this vein
includes specific attempts to measure proportionality and stability (Pocheville et al., 2017), as well as attempts to measure other
properties of causal relationships, such as power, abstraction, strength, or specificity using formalism from information theory (Ay and
Polani, 2008; Beckers and Halpern, 2019; Bourrat, 2021a, 2021b; P. E. Griffiths et al., 2015; Hoel, 2017; Korb et al., 2011). Moreover,
our account of information loss can be understood as a version of rate distortion theory (Sims, 2016; Zaslavsky et al., 2018), which has
been applied to discrete categorization of stimuli and working memory, though not (as far as we know) to causal representation. On

9 Specifically, one could measure the difference between the difference CMI(C, E) − CMI(Ĉ, Ê), where Ê is a compression of E.
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this interpretation, the compression function defines a distortion channel, or “information bottleneck” (Tishby et al., 2000), through
which information is passed from the less compressed variable set C to the effect variable E, and the function L measures how much
information is lost in the distorting process of compression. Despite these relationships to prior work, none of these approaches argue,
as we do, that measurements of the proportionality and stability of a causal relationship can both be expressed in terms of information
loss.

1.11. Motivation for Experiments 1–2

We have now introduced our theoretical framework for quantifying the amount of information lost in moving from a specific causal
representation of a given data-generating process to a more compressed causal representation of that same process. We intend for this
framework to serve both a normative and a descriptive role. On the normative side, we have argued above that two putatively positive
features of causal claims, proportionality and stability, can be given a unifying account in terms of information loss in causal models.
On the descriptive side, we hold that agents, all things being equal, trade off a preference for more compressed causal representations
against a preference for causal representations that minimize relative information loss (this descriptive claim summarizes the hy-
pothesesH1 andH2 above). These hypotheses can be tested empirically, and we report the results of two experiments that do so in the
following two sections.

In order to investigate people’s causal representations, we need a measurable response that reflects which variables they are
representing and at what level of granularity. Asking people to generate or evaluate Bayes nets would be a natural approach given our
formalism, but doing so would likely require training (see, for example, Bramley et al., 2015, 2017) and this approach would fail to
reflect the way that people tend to explicitly represent causal relationships in everyday life. Instead, causal relationships are often
expressed in the form of generic causal claims of the form “C causes E.” Not coincidentally, we have made several such claims in the
course of this paper (for example, “smoking causes lung cancer”). Such claims can be taken as evidence for causal representations on
the assumption that they bear some systematic relationship to the variables an individual has represented in their internal causal
model. Specifically, we take the generation or positive evaluation of a generic causal claim as evidence that the individual producing or
endorsing that generic holds a causal model consistent with that claim. For example, suppose that an individual shown data about a
fictional insect called the Bricofly evaluates the claim ‘raising Bricofly larvae in a warm, humid tank causes them to develop blue
wings’ more positively than the claim ‘raising Bricofly larvae in a warm tank causes them to develop blue wings.’ We would take this to
be evidence that the individual is representing the environment using a causal model of Bricofly development in which both different
temperatures and different humidity levels of the tank are retained in their representation, as opposed to a model in which only the
temperature of the tank is represented.

The assumption that the endorsement of generic causal claims reflects an individual’s causal representation, which guides our
methods in Experiments 1–4, is in keeping with a core tenet of the philosophy of science literature on causation: namely, that generic
causal claims are derived from causal models. For instance, Papineau describes himself as “committed to reading ‘C causes E’ as saying
that C is an ancestor of E in a system of generic causal equations,” where one can understand a ‘system of generic causal equations’ as a
variety of graphical causal model (Papineau, 2022, p. 20). Similarly, Woodward writes that “[causal] modeling techniques are at least
sometimes successful in reliably establishing generic causal claims” (Woodward, 2019, p. 765). Thus, the current paper’s assumption
of a close connection between the causal models used to represent a system and generic causal claims about a system is broadly in
keeping with at least one branch of the philosophical mainstream.

2. Experiment 1

In Experiment 1, we test H1: that in general, people treat compression as a positive feature of a causal representation, such that all
else being equal, the more compressed a given representation is, the better. To test this hypothesis, we presented participants with a
description of the results of controlled experiments on a fictional variety of mushroom, insect, or rock, and asked them to rate how
good it would be to include various claims in a summary of the described results. These claims included more and less compressed
causal claims (e.g., the more compressed claim ‘raising Bricofly [a fictional type of insect] larvae in a warm tank causes them to
develop blue wings,’ and the less compressed claim ‘raising Bricofly larvae in a warm, humid tank causes them to develop blue wings’).
We manipulated both the vignette used and whether the compression was achieved by coarse-graining a variable (thus manipulating
proportionality) or removing a background variable (thus manipulating stability). We predicted that in the absence of information loss
due to compression, participants would favor the more compressed representation, and that this would hold for manipulations of both
proportionality and stability.

Experiment 1 was also designed to test H2: that compression can come at the cost of informativeness, such that the optimal causal
representation will achieve a balance of compression and informativeness. To test this, we also manipulated the amount of information
loss realized by the more compressed causal claim. For example, if raising Bricofly larvae in a warm, humid tank results in an 85%
probability of their developing blue wings, and raising Bricofly larvae in a warm, dry tank results in a 70% probability of their
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developing blue wings, then implicitly, assuming an equal probability of having a humid or dry tank, the probability of developing blue
wings when Bricofly larvae are raised in a warm tank is 77.5%. Under these conditions, and assuming a 1% probability of developing
blue wings for larvae raised in a either a cold, humid tank or a cold, dry tank, moving from a causal model that keeps track of the
humidity or dryness of the tank to one that does not keep track of these properties results in a loss of information of 0.01, on the
measure of information loss that we introduce above.10 Thus, by manipulating the conditional probabilities in the data sets shown to
participants, we were able to manipulate the amount of information loss inherent in endorsing a more compressed causal claim. We
predicted that with greater information loss, we would see lower evaluations of the more compressed representation relative to the less
compressed representation.

The data, stimuli, and pre-registrations for all experiments in this paper are available at https://osf.io/cnwk6/?view_
only=f1c75535dc2c4a30a6f813a88baebd3a.

2.1. Participants

Participants were 450 adults recruited via Prolific. An additional 150 participants were excluded for failing comprehension checks
or for rating poor causal claims non-negatively. The sample of participants was 49.6% female and 48.9% male, with an age range of
19–79 and a mean age of 40.11 For all studies reported here, participation was restricted to users with a US-based IP address and a 95%
rating based on at least 100 previous studies. All studies received IRB approval from Princeton University.

2.2. Materials and procedures

Participants read a vignette in which they learned about a novel causal system, including the results of experiments involving that
system. For example, in the insect vignette, participants were presented with one of the following reports of results of experiments on
the fictional “Bricofly”12:

Report 1:

a) x% of all Bricofly larvae raised in a warm, humid tank developed blue wings;
b) 70% of all Bricofly larvae raised in a warm, dry tank developed blue wings;
c) 1% of all Bricofly larvae raised in a cold, humid tank developed blue wings;
d) 1% of all Bricofly larvae raised in a cold, dry tank developed blue wings.

Report 2:

a) x% of all Bricofly larvae raised in a warm tank and sprayed with water developed blue wings;
b) 70% of all Bricofly larvae raised in a warm tank and blown with dry air developed blue wings;
c) 1% of all Bricofly larvae raised in a cold tank and sprayed with water developed blue wings;
d) 1% of all Bricofly larvae raised in a cold tank and blown with dry air developed blue wings.

The value of x was varied between subjects and set at either 70, 85, or 98. These values correspond to information loss amounts of 0,

10 Here, we give explicit calculations of information loss for x=.7 and x=.85 to illustrate how these values are calculated. When x=.7, the
probability p(Blue Wings) = 0.25[.7 + 0.7 + 0.01 + 0.01] = 0.355. The causal mutual information between the less compressed causal variable and

the binary variable for whether a Bricofly develops blue wings is .25
[

.7log2
.7

.355 + .7log2
.7

.355 + .01log2
.01
.355 + .01log2

.01
.355 + .3log2

.3
.645 + .3log2

.3
.645 +

.99log2
.99
.645 + log2

.99
.645

]

≈ .47. The causal mutual information between the more compressed causal variable and the binary Blue Wings variable is

.5
[

.7log2
.7

.355+.01log2
.01
.355+.3log2

.3
.645+.99log2

.99
.645

]

≈ .47 so that the information lost due to compression is zero. When x=.85, p(Blue Wings) = 0.25

[.85 + 0.7 + 0.01 + 0.01] = 0.3925 and so the causal mutual information between the less compressed causal variable and the binary variable for

whether a Bricofly develops blue wings is .25
[

.85log2
.85

.3925 + 7log2
.7

.3925 + .01log2
.01

.3925 + .01log2
.01

.3925 + .15log2
.15

.6075 + .3log2
.3

.6075 + .99log2
.99

.6075 +

log2
.99

.6075

]

≈ .55, while the causal mutual information between the more compressed causal variable and the binary Blue Wings variable is

.5
[

.775log2
.775
.3925+.01log2

.01
.3925+.225log2

.225
.6075+.99log2

.99
.6075

]

≈ .54 , yielding an information loss due to compression of approximately 0.01.
11 Demographic data obtained from participants was not solicited as part of our study, but was provided by participants to Prolific upon joining the
platform.
12 The exact wording of this cover story for participants shown Report 1 was as follows. “Suppose that you are asked to briefly summarize the
findings of a scientific report on the Bricofly, a newly discovered type of insect. Specifically, the report aims to investigate why some Bricofly
develop blue wings. The report describes the outcomes of controlled experiments that involve raising Bricofly larvae in a tank that is kept at a
temperature that is either warm or cold, and either humid or dry.”
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0.01, and 0.06 respectively in moving from a less compressed representation to a more compressed representation, assuming a uniform
distribution over possible interventions on the causal variable(s) in the less compressed models in which the evaluated causal claims
can be represented. For a summary of all vignettes used, see Table 1.

After receiving a version of the findings described above, participants were then asked to rate, on a scale from − 3 (very bad) to 3
(very good), “how good it would be to include each of the following statements in a summary of this report:”.

[Compressed:] Raising Bricofly larvae in warm tank causes them to develop blue wings.
[High:] Raising Bricofly larvae [in a warm, humid tank/in a warm tank and spraying them with water] causes them to develop blue
wings.
[Low:] Raising Bricofly larvae [in a warm, dry tank/in a warm tank and blowing them with air] causes them to develop blue wings.

The causal claims High and Low are so-named because the cause cited in High always confers the same or greater probability onto
the effect than the causal claim Low (e.g., it is always the case that p(BlueWings|Warm,HumidTank) ≥ p(BlueWings|Warm,DryTank)).

As an attention check, participants were also asked to rate the following causal claims:

[Compressed (Bad):] Raising Bricofly larvae in a cold tank causes them to develop blue wings.
[High (Bad):] Raising Bricofly larvae [in a cold, humid tank/in a cold tank and spraying them with water] causes them to develop
blue wings.
[Low (Bad):] Raising Bricofly larvae [in a cold, dry tank/in a cold tank and blowing them with air] causes them to develop blue
wings.

Since all of these claims cite a cause that lowers the probability of its effect, we take them to be infelicitous in the context of the
scenario shown to participants. Thus, participants who gave ratings at or higher than the scale midpoint (i.e., a rating of 0–3) were
excluded.

For participants shown Report 1, the claim Compressed is a compression achieved by coarsening a causal variable, thus varying
proportionality. For participants shown Report 2, the claim Compressed is a compression achieved by eliding a background variable,
thus varying stability.13 Fig. 1 shows the implicit causal model in which each of these claims is embedded.

2.3. Results

Fig. 2 presents the mean ratings for each of Compressed, High, and Low as a function of the amount of information loss incurred
through compression. To test whether evaluation of less compressed causal claims relative to more compressed causal claims increased
as a function of information loss due to compression, we computed (as pre-registered) two difference scores:

COMPRESSED-HIGH: The difference between the participant’s evaluation of Compressed and their evaluation of High (e.g., the
difference between the evaluation of ‘Raising Bricofly larvae in a warm tank causes them to develop blue wings’ and the evaluation
of ‘Raising Bricofly larvae in a warm, dry tank causes them to develop blue wings’). This reflects the degree to which an agent sees a
causal claim derived from a more compressed model as more fitting than the most compelling causal claim that can be derived from
a less compressed model.
COMPRESSED-AVG(HIGH, LOW): The difference between the participant’s evaluation of Compressed and a uniform average of
their evaluations of High and Low (e.g., the difference between the evaluation of ‘Raising Bricofly larvae in a warm tank causes them
to develop blue wings’ and the average evaluation of ‘Raising Bricofly larvae in a warm, humid tank causes them to develop blue
wings’ and ‘Raising Bricofly larvae in a warm, dry tank causes them to develop blue wings’).14 This reflects the degree to which an
agent sees a causal claim derived from a more compressed model as more fitting, on average, than either alternative claim that
could be derived from a less compressed model.

In keeping with our hypothesis, we find that both of these difference scores are significantly predicted primarily by the amount of
information lost in compression. We regressed these dependent variables against independent variables denoting the assigned vignette
(Vignette), whether the more compressed claim is achieved by coarsening a causal variable or removing a background variable (Mode
of Compression), and the amount of information loss inherent in moving from the less-compressed to the more-compressed causal
model in which causal claims are embedded (Loss), as well as all possible interactions between the independent variables. The re-
gressions revealed that only Loss was a significant predictor of COMPRESSED-HIGH

(
β = − 16.623, p < .001,R2 = .083

)
, so that the

more information that was lost in the move from a more detailed to a more compressed causal model, the more participants preferred

13 As described in the previous section, on our formal analysis, both the coarsening of a causal variable and the elision of a background condition
can both be expressed as compressions of a partition over the same sample space, such that there is no difference between these two kinds of
compression. We have fashioned our examples to match what is understood in the literature (e.g., Woodward, 2010) as a distinction between a
refinement of the same variable and an elision of a background condition.
14 Due to an error, the equation for COMPRESSED-AVIG(HIGH,LOW) was pre-registered as (Evaluation of Compressed) - .5((Evaluation of High) -
(Evaluation of Low)). However, the correct equation is (Evaluation of Compressed) - .5((Evaluation of High) + (Evaluation of Low)).
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Table 1
Structure of Vignettes used in Experiments 1 and 2.

Vignette Effect Primary Cause Secondary Cause Background Condition

Drol (Mushroom) Bumpy Stems High/Low Mineral Soil High/Low Sodium Soil Watered with Salt/Fresh Water
Bricofly (Insect) Blue Wings Warm/Cold Tank Humid/Dry Tank Water Spray/Dry Air Blow
Chapagite (Rock) Fissures Warm/Cold Water Salt/Fresh Water Wrapped in Saline/Plain Cloth

Fig. 1. Graphs Showing the Causal Relationships between Variables in Experiment 1. Note: The top panel shows the compression used in the propor-
tionality condition, and the bottom panel shows the compression used in the stability condition. In both panels, the right graph shows the more
compressed causal model in which the claim Compressed is embedded, and the left graph shows the less compressed causal model in which the
claims High and Low are embedded.

Fig. 2. Evaluations of Causal Claims as a Function of Information Loss. Note: Bar plots showing mean evaluations in Experiment 1 (with 95% con-
fidence intervals) of causal claims under different loss conditions for all participants. Participants were asked to rate “how good it would be to
include each of the following statements in a summary of this report,” with ratings ranging from − 3 (very bad) to 3 (very good). Double asterisks
indicate significant within-participants differences at the 0.01 level in a mixed ANOVA, and triple asterisks indicate significant within-participants
differences at the 0.001 level. Mixed ANOVA for each value of Loss found that at Loss = 0, Compressed was rated more highly than High
(
η2 = .025, p = .002

)
. When Loss = 0.01, High was not rated significantly higher than Compressed

(
η2 = .005, p = .156

)
. When Loss = 0.06, High

was rated significantly higher than Compressed
(
η2 = .058, p < .001

)
.
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the claim High to the claim Compressed. Loss was also the only significant predictor of COMPRESSED-AVG(HIGH, LOW)
(
β = − 9.852, p < .001,R2 = .041

)
. Notably, we found no evidence of a significant interaction between Loss and Mode of Compression

on these dependent variables (COMPRESSED-HIGH: β = − .426,p = .875,R2 = .083; COMPRESSED-AVG(HIGH, LOW): β = − 2.106,
p = .426,R2 = .041), nor did we find any significant interaction effects between Mode of Compression and any other independent
variables.

For additional analyses based on each individual rating (Compressed, High, Low), see Fig. 2 as well as Supplementary Materials. As a
sanity check, we also analyzed the difference between participants’ evaluation of High and their evaluation of Low (we label this
difference ‘HIGH-LOW’). As expected, only Loss was a significant predictor of HIGH-LOW

(
β = 13.543, p < .001,R2 = .130

)
, with

larger values for HIGH-LOW as the probability of the effect given the cause in High increased (resulting in greater information loss).
In an exploratory analysis to better appreciate how any preference for compression (regardless of magnitude) varied as a function of

loss, we calculated the percentage of participants who strictly preferred Compressed to High. This percentage was approximately 36%
when Loss = 0, 21% when Loss = 0.01, and 10% when Loss = 0.06. This shows that the percentage of participants strictly preferring a
more compressed to a less compressed causal representation varies monotonically with the amount of information lost in compression.

2.4. Discussion

These results provide strong evidence in favor of the claim that participants’ relative evaluations of more and less compressed
causal claims are partially governed by the amount of information loss that is inherent in the more compressed causal claim. When
there is no information loss, participants evaluate more compressed causal claims significantly more highly than less compressed
causal claims (consistent withH1), suggesting that people award simplicity and penalize unnecessary complexity in their evaluation of
causal claims. When information loss is moderate, there is no significant difference between participants’ evaluations of more and less
compressed causal claims, suggesting that some participants prefer a compressed claim even when some information loss is inherent in
compression (consistent with H2).

Importantly, we found that participants’ pattern of evaluation of causal claims was similar across the condition in which
compression was achieved by coarsening a causal variable and the condition in which compression was achieved by removing a
background variable (see Supplementary Materials for additional figures by Mode of Compression). In keeping with our analysis, this
suggests that the amount of information that is lost due to compression is related to evaluations of the quality of causal claims in the
same way across both of these ways of compressing a causal representation of one’s environment. This, in turn, is in keeping with our
unified analysis of judgements of the proportionality and stability of causal claims in terms of information loss.

Note that we assume throughout our analysis of the results a semantics of causal claims in keeping with that advocated in
Woodward (2003, p. 203). Woodward puts forward a permissive semantics of causal explanation according to which a (set of) causal
variable(s) C taking some (set of) value(s) c explains an effect variable E taking its value e when there is some intervention setting C to
the value(s) ć ∕= c such that this intervention leads to E taking some value é ∕= e. Though Woodward’s causal semantics is stated
deterministically, one can naturally render it probabilistic by requiring instead that there exist some intervention setting C to the value
(s) ć ∕= c that confers higher probability on E taking some value é ∕= e than existed when C=c. On that approach, Compressed (Good),
High (Good) and Low (Good) are all true, and Compressed (Bad), High (Bad) and Low (Bad) are all false. We take participants’ re-
sponses to follow this semantics, as participants tended to judge all three of the “Good” causal claims above the scale midpoint, and all
three of the “Bad” causal claims below the scale midpoint. Thus, we claim that the interpretation of the data generated by our par-
ticipants is one in which differences in the aptness of asserting each of the three “Good” causal claims are tracking differences in
aptness among claims that are already taken as true. While this interpretation is most consistent with our theoretical framework, we
recognize that it is under-motivated by our current results, and leave its full defense as an empirical theory of causal semantics to future
work.

3. Experiment 2

In Experiment 1, participants evaluated the three key causal claims (Compressed, High, and Low) on the same screen. This could have
introduced unintended task demands. For instance, participants may have felt that endorsing Compressed was redundant with the
endorsement of both High and Low, or that endorsing Compressed (when the option to select more fine-grained options was available)
implied the causal irrelevance of the unspecified factor. To ensure that the results of Experiment 1 were robust to such considerations,
we replicated the study with the amendment that participants were shown the same data twice, and first asked to evaluate Compressed,
and only asked to evaluate High and Low after their evaluation of Compressed was completed.

3.1. Participants

Participants were 483 adults recruited via Prolific. An additional 117 participants were excluded for failing comprehension checks
or rating poor causal claims non-negatively. The sample of participants was 50.1% female and 48.6% male, with an age range of 19–81
and a mean age of 38.
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3.2. Materials and procedures

The procedure was identical to that used in Experiment 1, with three exceptions. First, as described above, participants completed
their evaluation of Compressed before being asked to evaluate High and Low. Second, sentence (b) in both descriptions used in the first
experiment was amended to replace 70% with 55%. Analogous replacements were made for the other two vignettes. Third, the value
of x in sentences (a) and (b) was varied between participants and was set at either 55, 85, or 98, leading to information loss amounts of
0, 0.04, and 0.11 respectively, under the assumption of a uniform distribution over possible interventions on causes in the less-
compressed representation of the data-generating process. Thus, Experiment 2 replicates Experiment 1 for a different range of loss
values.

3.3. Results

Fig. 3 presents the mean ratings for each of Compressed, High, and Low as a function of Loss. We performed the same regressions as in
Experiment 1. Once again, we find that the amount of information lost in compression was a significant predictor of all three dependent
variables (COMPRESSED-HIGH: β = − 14.543, p < .001,R2 = .213; COMPRESSED-AVG(HIGH, LOW): β = − 6.391, p < .001,R2 =

.064; HIGH-LOW: β = 16.303,p < .001,R2 = .296). Thus, as the amount of information lost due to compression increased, Compressed
was again evaluated more negatively in comparison with more detailed causal claims. In addition, we again saw larger values for
HIGH-LOW as the probability of the effect given the cause in High increased (resulting in greater information loss). For additional
analyses based on each individual rating (Compressed, High, Low), see Fig. 3 and Supplementary Materials.

In a further replication of Experiment 1, the manner in which compressed causal claims were generated (i.e., either by coarsening a
causal variable or removing a background variable) was not a significant predictor of any of the three dependent variables measured,
nor did it interact with Loss (Regression statistics for the interaction between Mode of Compression and Loss: COMPRESSED-HIGH:
β = − 1.803, p = .171, R2 = .213; COMPRESSED-AVG(HIGH, LOW): β = − 1.172, p = .372, R2 = .064; HIGH-LOW: β = 1.263,
p = .281,R2 = .296; see Supplementary Materials for additional figures broken down by Mode of Compression). This again suggests
that measures of information loss in causal model compression provide a unifying account of the value of both proportional and stable
causal claims.

In an exploratory analysis, we measured the percentage of participants who strictly preferred Compressed to High across all three
loss levels. This percentage was approximately 39% when Loss = 0, 10% when Loss = 0.04, and 2% when Loss = 0.11.

3.4. Discussion

The results of Experiment 2 replicate the positive results of Experiment 1 for a different range of loss levels, and under conditions
such that Compressed was evaluated separately from High and Low. This renders the aforementioned concerns about task demands less
plausible. Nevertheless, our results in Experiments 1 and 2 remain subject to two salient concerns. First, Experiments 1–2 varied
proportionality by adding or omitting qualifiers to a variable (e.g., warm humid tank versus warm tank). One might worry that tank
temperature and tank humidity are better treated as separate variables in this case. More canonical manipulations of proportionality
involve a continuum that can be coarsened into discrete ranges (e.g., a scale with ten values that is coarsened into two ranges of values).
Thus, the results of Experiments 1–2 leave open the possibility that these more canonical manipulations of proportionality would show
divergence between effects of information loss on proportionality and stability. Second, Experiments 1 and 2 were designed to provide
positive support for H1 and H2, but were not designed to differentiate our account from another alternative hypothesis: that evalu-
ations of more and less compressed causal claims do not reflect information loss, as our account suggests, but instead differences in
causal contrast (consistent with Lien and Cheng, 2000). Experiment 3 was designed to addresses both of these concerns.

4. Experiment 3

Lien and Cheng (2000) develop an account of how people differentiate between genuine and spurious causes, and in so doing
present results in keeping with the claim that when agents choose between candidate causal explanations of a given event, they choose
the one that maximizes causal contrast, which is given by the following equation15:

Cont(e; c) = p(e|do(c)) − p(e|do(¬c))

Applying Lien and Cheng’s formula to the values from Experiments 1 and 2 reveals that as the probability of the effect for High in-
creases, the difference in contrast between the compressed causal claim and the high causal claim decreases (see Table 2 for calcu-
lations demonstrating this trend). So, it seems that our results in Experiment 1–2 might just as well be explained by the hypothesis that
participants are basing their judgments on the difference in contrast between Compressed and High as they are by our hypothesis that
participants are balancing compression against information loss. To distinguish between these two hypotheses, Experiment 3 used a

15 We have re-written Lien and Cheng’s contrast measure in terms of Pearl’s do-calculus. In the original formulation, causal contrast is written as
Cont(e; c) = p(e|c) − p(e|¬c). . Although not cited in Lien and Cheng’s paper, the causal contrast equation is very similar to Allan’s ΔPC measure
(Allan, 1980).
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similar paradigm to Experiments 1–2, but where participants were shown data sets for which information loss and causal contrast
generated different qualitative predictions. This design allows us to test which of these two quantities is a more plausible candidate for
the cue that participants are using to evaluate causal claims. Experiment 3 also differed from Experiments 1–2 in manipulating
proportionality through coarsenings of a continuous quantity.

4.1. Participants

Participants were 458 adults recruited via Prolific. An additional 185 participants were excluded for failing comprehension checks
or rating poor causal claims non-negatively. The sample of participants was 49.9% female and 50.1% male, with an age range of 18–79
and a mean age of 37.

4.2. Materials and procedures

Participants read a vignette in which they learned about a novel causal system, including the results of experiments involving that
system. As in Experiments 1 and 2, the fictional experiments involved either insects, mushrooms, or rocks. For example, in the insect
vignette, participants assigned to the proportionality condition were presented with one of the data scenarios shown in Table 3, and
asked to evaluate the following three causal claims on a scale from − 3 to 3:

[Compressed:] Raising Bricofly larvae in a moderate-temperature tank causes them to develop blue wings.
[High:] Raising Bricofly larvae in a moderately warm tank causes them to develop blue wings.
[Low:] Raising Bricofly larvae in a moderately cold tank causes them to develop blue wings.

The causal claims evaluated in the stability case were identical to those evaluated in Experiments 1 and 2, only with “moderate-
temperature tank” replacing “warm tank” in the insect vignette, and a similar substitution made in other vignettes. Table 3 also shows
the values of both information loss and the difference in contrast between Compressed and High for all three data sets. As can be seen
from the table, Scenarios 2 and 3 both differ from Scenario 1 by the same amount with respect to the difference in contrast between
Compressed and High, but only Scenario 2 differs from Scenario 1 with respect to information loss. Thus, if we believe that information
loss and not causal contrast is affecting participants’ evaluations of causal claims, then we would predict that participants will treat
Scenarios 1 and 3 similarly, but treat Scenario 2 differently from both Scenarios 1 and 3.

4.3. Results

Fig. 4 shows the results of Experiment 3 for all three scenarios across both modes of compression. As we were primarily concerned
with differential evaluations of Compressed and High across different scenarios, we ran mixed ANOVA for the within-participants
difference between Compressed and High in each scenario. We found that in Scenarios 1 and 3, Compressed was strictly preferred to
High (Scenario 1: η2 = .019, p = .001; Scenario 3: η2 = .032, p < .001). This is consistent with H1 (since participants favored
compression when information loss was zero). Moreover, the preference for Compressed over High did not differ across Scenarios 1 and
3 (β = .041,p = .637), which is consistent with the predictions of information loss, but not those of causal contrast (see Table 3).

Unlike Scenarios 1 and 3, in Scenario 2, High was strictly preferred to Compressed (η2 = .120,p < .001). This is consistent with the
hypothesis that compression trades off with information loss, such that less compressed causal claims may be favored when infor-
mation loss is not negligible. Moreover, the difference in ratings between Compressed and High differed across Scenarios 2 and 3 (β =

− 22.276,p < .001,R2 = .232); this is consistent with the predictions of information loss, but not with those of causal contrast (see

Fig. 3. Evaluations of Causal Claims as a Function of Information Loss. Note: Bar plots showing mean evaluations in Experiment 2 (with 95 % con-
fidence intervals) of causal claims under different loss conditions for all participants. Triple asterisks indicate significant within-participants dif-
ferences at the 0.001 level. Mixed ANOVA for each value of Loss found that at Loss = 0, Compressed was rated more highly than High
(
η2 = .044, p < .001

)
. At Loss = 0.04, High was rated more highly than Compressed

(
η2 = .036, p < .001

)
. At Loss = 0.11, High was rated more

highly than Compressed
(
η2 = .179, p < .001

)
.
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Table 3). Notably, we do see a significant effect of the proportionality/stability condition on the difference in evaluations between
Compressed and High in Scenario 1 (η2 = .031,p = .006), but not for Scenarios 2 and 3, suggesting that the finding for Scenario 1 is
likely spurious. A full report of all pre-registered analyses for Experiment 3 is provided in the Supplemental Materials.

4.4. Discussion

Although Lien and Cheng (2000)’s causal contrast theory was developed as an account of how people differentiate between genuine
and spurious causes, rather than how people determine a level of compression at which to represent the causal structure of their
environment, causal contrast nevertheless offers a natural alternative to our own account of information loss in explaining why people
might favor more or less compressed causal claims. Experiment 3 was designed to provide a direct test of the predictions of information
loss versus those of causal contrast in explaining judgments like those elicited in Experiments 1–3. The results provide clear support for

Table 2
Information loss and causal contrast for three different scenarios shown in Experiment 1, in the proportionality conditions.

Tank Condition % of Bricofly Developing
Blue Wings

% of Bricofly Developing
Blue Wings

% of Bricofly Developing
Blue Wings

Warm, Humid Tank 70 % 85 % 98 %
Warm, Dry Tank 70 % 70 % 70 %
Cold, Humid Tank 1 % 1 % 1 %
Cold, Dry Tank 1 % 1 % 1 %
Loss 0 0.01 0.06
Contr(Blue Wings; Warm Tank) 0.7 − .01 = 0.69 0.5[.85 + 0.7] − .01 = 0.765 0.5[.98 + 0.7] − .01 = 0.83
Contr(Blue Wings; Warm, Humid Tank) 0.7 – (1/3)[.7 + .01 + .01] =

0.46
0.85 – (1/3)[.7 + .01 + .01] =
0.61

0.98 – (1/3)[.7 + .01 + .01] =
0.74

Contr(Blue Wings; Warm Tank) ¡ Contr(Blue Wings;
Warm, Humid Tank)

0.69 − .46 = 0.23 0.765 − .61 = 0.155 0.83 − .74 = 0.09

Table 3
Information loss and causal contrast for three different scenarios shown in Experiment 3.

Scenario 1 Scenario 2 Scenario 3

Tank Condition % of Bricofly
Developing Blue
Wings

Tank Condition % of Bricofly
Developing Blue
Wings

Tank Condition % of Bricofly
Developing Blue
Wings

Extremely Cold Tank
(0–24 degrees)

1 % Extremely Cold Tank
(0–24 degrees)

1 % Extremely Cold Tank
(0–24 degrees)

43 %

Moderately Cold Tank
(25–49 degrees)

70 % Moderately Cold Tank
(25–49 degrees)

70 % Moderately Cold Tank
(25–49 degrees)

70 %

Moderately Warm Tank
(50–74 degrees)

70 % Moderately Warm Tank
(50–74 degrees)

98 % Moderately Warm Tank
(50–74 degrees)

70 %

Extremely Warm Tank
(55–99 degrees)

1 % Extremely Warm Tank
(55–99 degrees)

1 % Extremely Warm Tank
(55–99 degrees)

43 %

Loss 0 Loss 0.061 Loss 0
Contr(Comp)-Contr

(High)
0.23 Contr(Comp)-Contr

(High)
0.09 Contr(Comp)-Contr

(High)
0.09

1 In the pre-registration for Experiment 3, this figure is mistakenly given as ‘.31.’

Fig. 4. Mean evaluations of causal claims for three scenarios in Experiment 3. Note: Triple asterisks indicate significant within-participants differences
at the 0.001 level, while double asterisks indicate significant within-participants differences at the 0.01 level.
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information loss: differences in information loss (holding differences in causal contrast fixed) predicted different patterns in ratings,
while differences in causal contrast (holding information loss fixed) did not. Moreover, because our proportionality cases in Experi-
ment 3 involve coarsenings of a continuous quantity (e.g., temperature), the results bolster our claim that the information loss
framework provides a unified account of evaluations of both proportionality and stability.

Having established our first key hypotheses (H1 & H2) – that people treat both informativeness and compression as positive
features of causal claims, to be traded off against one another – we turn to our third key hypothesis (H3) – that agents will tolerate
information loss for the sake of compression whenever the lost information is not decision-theoretically valuable to that agent in a
given context.

4.5. Decision theory and the value of lost information

The results of Experiments 1–3 demonstrate that the strength of participants’ preference for more compressed causal claims over
less compressed claims is predicted by the amount of information loss achieved by moving from a model in which the less compressed
claim is embedded to a model in which the more compressed claim is embedded. However, these results also show that when the total
amount of information loss is low, the preference for more detailed causal claims over less detailed ones is not significant. Additionally,
they show that even as the total amount of information loss increases, mean evaluations of compressed causal claims remain positive.
This suggests that, all things considered, people assign value to lossy compressions of a causal model, even when they have the op-
portunity to endorse a lossless compression of the same underlying data, where a “lossless” compression is understood as one that
preserves all four variable values.

What explains the value that people assign to compressed causal claims that elide information about the underlying dynamics of the
processes that they represent? As stated in the introduction, our hypothesis is that agents’ evaluations of causal claims that compress
their target systems with information loss are driven at least in part by agents’ judgments as to the decision-theoretic value of the in-
formation that is lost in compression. That is, when agents judge that the information that is lost in the move to a more compressed
causal model is not relevant to their choice between a set of feasible actions, they evaluate the compressed causal claim more positively
than they would if the lost information were relevant to their choice between a set of actions.

To illustrate, consider an agent who is tasked with stocking headache medicines at a pharmacy. These medicines can have one of
two ingredients (Reptol or Psylo), each of which comes in one of two types (Type-1 or Type-2). The agent wants to stock all and only
those headache medicines that relieve headaches in y% of patients, and has access to the data in Table 4. Suppose that the agent is in
the proportionality condition. If y = 50, such that they would stock any medicine that reduces severity of headaches in at least 50% of
patients, then whether a Reptol-based or Psylo-based medicine is of Type-1 or Type-2 is irrelevant to their decision; they will stock
Reptol-based medicines and not Psylo-based medicines. Thus, the compression from ‘Type-1 Reptol causes reduced severity of
headaches’ to ‘Reptol causes reduced severity of headaches’ incurs no loss of decision-theoretically valuable information for this agent;
it elides only decision-irrelevant information about the type of Reptol, and we would expect the agent to be indifferent between the two
claims if asked to evaluate their aptness in describing the efficacy of headache medicines more generally, or to show a preference for
the more compressed claim. By contrast, if y = 80, such that the agent would stock any medicine that reduces severity of headaches in
at least 80% of patients, and if x > 80, then only Type-1 Reptol should be stocked, according to the agent’s own preferences. Thus, the
compression from ‘Type-1 Reptol causes reduced severity of headaches’ to ‘Reptol causes reduced severity of headaches’ does elide
decision-relevant information about the type of Reptol. Under this condition, we would therefore expect an agent to evaluate the less
compressed causal claim more positively than the more compressed causal claim. We use this motivating example as part of our
materials in Experiment 4.

Mathematically, we can define the value of the information lost when moving from a less compressed causal representation to a
more compressed representation as follows. We begin with a set of variables that can be partitioned into a singleton set containing an
action variable A, a singleton set containing an effect variable E, and a subset of observable variables O. Let u : RA × RE→R be a
real-valued utility function defined on the range of the action variable A and the effect variable E. Each value u(a, e) of this function
represents the utility, to some agent, of setting A to a particular value a (i.e., performing a particular action) when E takes a particular
value e. The expected utility of an action a is defined as follows:

E(u|a) =
∑

e
p(e|do(a))u(a, e)

The expected utility of an action a, given an observation that the variables in O take the set of values o, is given by the equation:

E(u|a;o) =
∑

e
p(e|do(a),o)u(a, e)

Where p(e|do(a),o) =
p(e,o|do(a))
p(o|do(a)) . With these two equations in hand, we define the decision-theoretic value of the information contained

in the observable variables O as follows:

VOIu(O) =
∑

o
p(o)maxaE(u|a;o) − maxaE(u|a)

That is, the value of the information contained in a set of observable variables is the average difference between the maximum utility
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an agent can expect when they have observed the value of all observable variables and the maximum utility that agent can expect when
they have not made any observations. This is the standard decision-theoretic notion of value of information as defined by Blackwell
(1953) and Good (1960).

Equipped with this definition, consider a case in which we move from a less compressed set of observable variables O (such as
whether a medicine contains Type-1 Reptol, Type-2 Reptol, Type-1 Psylo, or Type-2 Psylo) to a more compressed set of observable
variables Ô (such as whether a medicine contains Reptol or Psylo) for a fixed action variable A and an effect variable E. We can now
calculate the decision-theoretic value of lost information (VOLI) with respect to this move, for an agent with utility function u : RA ×

RE→R:

VOLIu(O, Ô) = VOIu(O) − VOIu(Ô)

This quantity tells us how costly the compression fromO to Ô is for an agent whose preferences over values of A and E are given by the
utility function u.

There is an important connection between our measure of the value of lost information and our measure of overall information loss.
Specifically, for a natural formalization of an agent whose sole goal is to guess the correct distribution over an effect variable, the value
of lost information in a compression is equal to the total amount of lost information involved in compression. To see this, consider an
agent for whom the range of their action variable A consists of all possible probability distributions over an effect variable E, with each
distribution in A representing the act of making a prediction about the probability of each value of E obtaining. The agent’s utility
function is such that for any action a and value e of E, u(a, e) = log2

a(e)
p(e). This utility function rewards the agent for assigning high

probability to E taking the value e when this actually occurs, with greater reward when said occurrence was unlikely according to the
marginal distribution over E. Now consider a set of causal variables C with compression Ĉ. For such an agent, VOLIu(C, Ĉ) = L (C, Ĉ,
E).16 So, for the special case of an agent who only aims to make correct predictions about E, the value of lost information just is the total
amount of information lost.

In this light, participants’ responses in Experiments 1–3 can be interpreted as reflecting a trade-off between: i) satisfying the
decision-theoretic goal of making correct predictions about E, and ii) maintaining a compressed causal representation of the system
under study. However, in the following experiments we deliberately place agents in decision scenarios in which their goals involve
more than solely guessing the correct distribution over the effect variable, to examine the more general role of the value of lost in-
formation in agents’ evaluations of more and less compressed causal claims. Thus, what emerges from Experiments 1–3 is a general
account according to which people evaluating more and less compressed causal representations engage in a two-way tradeoff between
compression and maintaining decision-theoretically valuable information, but where, in at least some cases, peoples’ decision-
theoretic goals include making accurate predictions (and therefore show sensitivity to information loss).

4.6. Motivation for Experiment 4

Experiment 4 tests H3: when an agent is placed in a decision context, that agent’s evaluations of compressed causal claims will be
sensitive to whether or not the value of the information lost in compression is zero or strictly positive. Specifically, we expect agents to
evaluate compressed causal claims more positively when the value of the information lost in the relevant compression is zero.

One implication of these predictions is that agents’ causal representations of their environments are primarily guided by their
prudential values. That is, agents build causal models of their environments so as to achieve a representation that: i) allows for
expected-utility-maximizing interventions on their environment, and ii) encodes observations that facilitate the choice of expected-
utility-maximizing actions. In this respect, our hypothesis and the results supporting it are in keeping with work on value-guided
task construal by Ho et al. (2022), as well as theoretical work by Brodu (2011), Kinney (2019), and Kinney and Watson (2020),
arguing that prudential factors such as an agent’s interest in realizing certain values of an effect variable and the value of the infor-
mation provided by a causal variable determine the overall quality of compressed causal claims. It is also consistent with work by

Table 4
Data shown to participants in Experiment 4.

Medication Facts about Medication (Proportionality Condition) Facts about Medication (Stability Condition) % of Patients with Reduced
Severity of Headaches

A Active ingredient Type-1 Reptol Active ingredient Reptol and taken with food x% (x > 80)
B Active ingredient Type-2 Reptol Active ingredient Reptol and taken without food 70 %
C Active ingredient Type-1 Psylo Active ingredient Psylo and taken with food 1 %
D Active ingredient Type-2 Psylo Active ingredient Psylo and taken without food 1 %

16 To see this, consider the quantity
∑

cq(c)maxa∈A
∑

ep(e|do(c) )u(a, e) where u(a, e) = log2
a(e)
p(e). The quantity

∑
ep(e|do(c) )u(a, e) is maximized

when a(e) = p(e|do(c) ) for all e. Thus,
∑

cq(c)maxa∈A
∑

ep(e|do(c) )u(a, e) =
∑

c,eq(c)log2
p(e|do(c) )

p(e) = CMI(C,E). The quantity maxa∈A
∑

ep(e)u(a, e) is

maximized at zero for a(e) = p(e). Thus, VOIu(C) = CMI(C, E) − 0 = CMI(C,E). Repeating for Ĉ yields VOIu(Ĉ) = CMI(Ĉ, E). Thus, VOLIu(C, Ĉ) =

CMI(C,E) − CMI(Ĉ,E) = L (C, Ĉ, E).
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Vasilyeva, Wilkenfeld, and Lombrozo (2017) showing that contextual utility affects the perceived quality of causal explanations,
although this work did not investigate compression. Moreover, Ho et al.’s experimental paradigms did not test the extent to which
explicitly causal representations are value-guided, and so our experiments are also the first to test these ideas as descriptive claims
about human evaluations of causal claims.

5. Experiment 4

In Experiment 4, we designed vignettes with a similar structure to those used in Experiments 1–3, but which also allowed us to
manipulate whether the VOLI realized in the move from a less compressed to a more compressed causal model of the data presented in
the vignette was zero or strictly positive. We hypothesized that when VOLI is zero, participants would tolerate information loss, and
therefore rate causal claims embedded in a more compressed representation at least as highly as those embedded in a less compressed
representation. By contrast, when VOLI is strictly positive, we hypothesized that participants would be less tolerant of information loss,
since the more compressed representation fails to include information that is prudentially valuable to them, and they would therefore
prefer claims that are embedded in a less compressed representation. As in our earlier studies, we also hypothesized that these patterns
of evaluation would hold regardless of whether compression was achieved by coarsening a causal variable or eliding a background
condition.

5.1. Participants

Participants were 372 adults recruited via Prolific. An additional 408 participants were excluded for failing comprehension checks,
and an additional 26 participants were excluded due to experimenter error.1718 The sample of participants was 49.2% female and
48.5% male, with an age range of 19–93 and a mean age of 42.

5.2. Materials and procedures

We presented participants with the results of fictional experiments involving headache medications or training programs for new
employees at a company. Participants were told that headache medications/training programs had to be shown to be effective in a
certain percentage of people in order to be recommended for stocking on a pharmacy’s shelves/being required for new employees.
Participants were then asked to answer questions about the decisions they would make about different headache medicines or training
programs, and then asked a second set of questions about their pattern of decision making with respect to the first set of questions.

To illustrate, participants shown the vignette about headache medicines were shown the data in Table 4. The value of x was varied
between participants, as was whether the first or second set of facts about each medication was shown. Participants shown these data
were then told that their manager had asked them to stock any medicine that was shown to reduce the severity of headaches in at least
y% of patients, where 1 < y < x. They were then asked to answer the following yes-or-no questions:

A1. Would you stock Medication A?
A2. Would you stock Medication B?
A3. Would you stock Medication C?
A4. Would you stock Medication D?

The correct answer to A1 is always ‘Yes’, and the correct answer to A3 and A4 is always ‘No.’ Whether the correct answer to A2 is
‘Yes’ or ‘No’ depends on whether y is less than or greater than 70. This was manipulated between participants, by setting y = 50 for
some and y = 80 for others. Participants who answered these questions incorrectly were given a second chance to answer. If they
answered incorrectly again, their data were excluded from analysis. Participants were then shown a summary of the correct answers to
the first set of questions, and then asked to say whether the following statements, or analogous statements for those assigned to
different conditions, were true or false:

B1. Whenever a medication contains Reptol, you would stock it, regardless of whether it is Type-1 or Type-2.
B2. Whenever a medication contains Reptol, you would stock it if it is Type-1 but not if it is Type-2.
B3. Whenever a medication contains Psylo, you would not stock it, regardless of whether it is Type-1 or Type-2.
B4. Whenever a medication contains Psylo, you would stock it if it is Type-1 but not if it is Type-2.

The statement B1 is true when y ≤ 70 and false when y > 70, B2 is true when y > 70 and false when y ≥ 70, B3 is always true, and B4

17 A bug in our code meant that these 26 participants did not receive accurate feedback on the answers that they gave to multiple choice questions
that were used to exclude participants from analysis. This resulted in slightly fewer data points being collected than were pre-registered. We exclude
the data produced by these participants from our analysis below for the sake of accuracy, but note that all reported significant results still hold if the
data from these participants is included.
18 Given the large number of exclusions, we repeated key analyses including all participants. Patterns of findings were similar overall; see Sup-
plementary Materials for details.
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is always false. Participants who answered these questions incorrectly were given a second chance to answer. If they answered
incorrectly again, their data were excluded from analysis.

Participants were then asked to evaluate, on a scale from − 3 (very bad) to 3 (very good), how good it would be to include the
following causal claims in a summary of the data prepared for a colleague:

[Compressed:] Reptol causes reductions in the severity of headaches.
[High:] [Type-1 Reptol/Reptol taken with food] causes reductions in the severity of headaches.
[Low:] [Type-2 Reptol/Reptol taken with food] causes reductions in the severity of headaches.
[Compressed (Bad):] Psylo causes reductions in the severity of headaches.
[High (Bad):] [Type-1 Psylo/Psylo taken with food] causes reductions in the severity of headaches.
[Low (Bad):] [Type-2 Psylo/Psylo taken with food] causes reductions in the severity of headaches.

See Fig. 5 for a schematic representation of the compression inherent in endorsing the causal claim Compressed in the conditions in
which compression involves coarsening a causal variable. As in Experiments 1–3, data from participants who assigned non-negative
evaluations to the bad causal claims were excluded from analysis.

Between participants, we manipulated: the vignette used (see Table 5 for a comparison of the pharmaceutical and employee
training vignettes); the amount of information loss realized by the more compressed causal claim (by setting the value of x to either 85
or 98, resulting in information loss amounts of 0.01 and 0.06, respectively); whether compression was achieved by coarse-graining a
variable, thus manipulating proportionality, or eliding a background variable, thus manipulating stability (this was done in the
pharmaceutical vignette by showing participants either the first or second set of facts about each medication, respectively); and
whether the decision-theoretic value of the information lost in the move from a less compressed to a more compressed causal model
was zero or strictly positive (by setting the value of y to either 50 or 80, respectively).

The final manipulation described above has no analog in Experiments 1–3, and so we explain it here in more detail. In the
pharmaceutical case, when y = 50, participants should recommend medications containing Reptol regardless of whether that Reptol is
Type-1 or Type-2, and regardless of whether the medication must be taken with or without food. Under these conditions, the infor-
mation lost in the compression is of no use to the agent’s decision-making. Thus, VOLI in this case is zero. However, when y = 80, only
medications containing Type-1 Reptol/Reptol taken with food should be stocked on the shelves, and so the VOLI for the compression is
strictly positive, on the assumption that agents assign strictly higher utility to complying with their manager’s directions than to failing
to comply. By manipulating whether VOLI was zero or strictly positive between participants, we were able to measure the extent to
which the decision-theoretic value of the amount of information lost, controlling for the amount of information loss itself, influenced
participants’ evaluations.

5.3. Results

Fig. 6 shows mean evaluations of each causal claim as a function of information loss under the different VOLI conditions. These
results are in keeping with our prediction that participants would prefer more compressed causal representations in cases where VOLI
was zero than in cases where VOLI was positive, and that in the positive-VOLI case, any preference for compression would decrease
with information loss. We first performed the same regressions as Experiments 1 and 2, with an additional binary independent variable
added to represent whether the VOLI due to compression in the vignette shown to a participant was zero or strictly positive (once
again, we also regressed our dependent variables on all possible interactions between all four of our independent variables). We found
that COMPRESSED-HIGH, the difference between evaluations of Compressed and High, was significantly predicted by the following: i)
whether VOLI was zero or strictly positive

(
β = − .429, p = .001,R2 = .242

)
, such that the difference between evaluations of Com-

pressed and High was negligible when VOLI was zero, but much larger and negative (reflecting higher ratings for High than Compressed)
when VOLI was strictly positive; ii) the amount of information loss due to compression

(
β = − 7.655, p = .010,R2 = .242

)
, such that

the extent to which ratings for High dominated ratings for Compressed increased as information loss increased; and iii) the interaction
between whether VOLI was zero or strictly positive and the information loss due to compression

(
β = − 6.573, p = .027,R2 = .242

)
, so

that when VOLI was strictly positive, increases in information loss due to compression resulted in lower values of COMPRESSED-HIGH.
We followed up this interaction with independent tests of each VOLI condition. This revealed that when we restricted our analysis

to just those cases in which VOLI is strictly positive, the sole significant predictor of COMPRESSED-HIGH is the amount of information
lost in compression

(
β = − 11.809, p = .015,R2 = .069

)
; by contrast, in those conditions for which VOLI was zero, none of the inde-

pendent variables were significant predictors of COMPRESSED-HIGH. Finally, the original regression also revealed an interaction
between: i) whether VOLI was zero or strictly positive, ii) the amount of information loss due to compression, and iii) the vignette
shown to a participant

(
β = − 6.847,p = .021,R2 = .242). When VOLI was zero, participants who were shown the Pharma vignette

tended to assign lower values to COMPRESSED-HIGH than those who were shown the training vignette. When VOLI was strictly
positive, this relationship was reversed; participants who were shown the Pharma vignette tended to assign higher values to
COMPRESSED-HIGH than those shown the Training vignette. As in Experiments 1–2, we found that the interaction between infor-
mation loss due to compression, VOLI, and whether compression was achieved by coarsening a causal variable (proportionality) or
removing a background variable (stability) was not a significant predictor of any of our dependent variables (COMPRESSED-HIGH :

β = − .200,p = .946,R2 = .242).
See the Supplemental Materials for the full pre-registered findings of Experiment 4.
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5.4. Discussion

Experiment 4 found support for H3: When participants were asked to select a causal representation in the context of a particular
decision problem, their tolerance for information loss was moderated by the decision-theoretic value of the information that was lost.
Specifically, when the value of information lost in moving to a more compressed representation was zero, they rated the compressed
claim (Compressed) and the less compressed claim associated with the highest probability (High) similarly, regardless of how much
information loss was associated with the more compressed claim. But when the value of information lost through compression was
strictly positive, participants favored the less compressed claim associated with the highest probability (High) over the more com-
pressed claim (Compressed), and additionally showed sensitivity to the amount of information lost, with the compressed claim more
strongly disfavored when it was associated with greater information loss. This suggests that agents do not merely consider whether lost
information has strictly positive value or zero value when evaluating claims embedded in more or less compressed causal models, but
instead continuously trade off an all-things-considered preference for compression against the decision theoretic value of the infor-
mation lost in compression, where there is an agential goal both to have enough information to accomplish a task and to be as pre-
dictively accurate as possible.

Our finding that manipulating the decision context in which a person finds themselves changes whether they prefer a more or less
compressed representation of the same data helps to address a concern about our earlier experiments. Namely, in Experiment 1, one

Fig. 5. Graphs showing the Causal Relationships between Variables in Experiment 4. Note: The top panel shows the uncompressed graph used in the
proportionality condition (in which the claims High and Low are embedded), and the bottom panel shows the compressed graph used in the same
condition (in which the claim Compressed is embedded). Whether the agent’s manager approves of their choice of medication to stock depends on
their choice of medication and the active ingredient in that medication, as indicated in the graph. The agent can observe the active ingredients in
each medication, which is in turn informative about the likelihood that their manager approves their choice of medication. Note that these models
depict the causal structure of the scenario form the point of view of decision maker who has to choose whether to stock each medication, but in turn
support less compressed and more compressed causal models wherein either ‘Type-1 Reptol’ or ‘Reptol’ is represented as a cause of reduced severity
of headaches.

Table 5
Structure of vignettes used in Experiment 4.

Vignette Effect Primary Cause Secondary Cause Background Condition

Pharma Reduced Severity of headaches Reptol/Psylo Type-1/Type-2 Taken with/without food
Training Becoming a successful employee Case Studies/Simulations Task-focused/Problem-focused Held on weekends/weekdays
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might think that some participants prefer a more compressed representation of the data in the Loss= 0.01 condition because they judge
that a 15% difference in the probability of blue wings across tank humidity conditions is not statistically significant. If this were the
case, then one should see the same pattern of preferences in this condition regardless of whether the information lost in compression is
decision-theoretically valuable. That we do not see this suggests that participants do tend to think that the observed difference in
probabilities is statistically meaningful, and that this statistical difference matters in cases where it can be exploited to make better
decisions.

Regressions on the individual evaluations of each causal claim show a contrast between the effect of different amounts of infor-
mation loss in Experiments 1 and 2 and the effect of different values for VOLI in Experiment 4. In Experiments 1 and 2, changes in the
amount of information loss involved in compression mostly led to higher evaluations for High, without significant changes to eval-
uations of Compressed. By contrast, manipulations of VOLI in Experiment 4 largely led to changes in evaluations of Compressed, without
significant changes in the value of High. This suggests that when more information is lost in compression, agents avoid that information
loss by ensuring that they include detailed causal claims in their descriptions of a data-generating process. However, when the lost
information is not decision-theoretically valuable to them, they do not downgrade their evaluations of more detailed causal claims, but
instead upgrade their evaluations of causal claims embedded in a more compressed causal model.

6. Experiment 5

Experiments 1–4 offer support for hypotheses H1-H3. However, in all four of these studies participants were explicitly asked to say
how good or bad it would be to include a given claim in a summary of a data-generating process to be presented to a colleague. This
raises the possibility that our results are not explained by a general trade-off between compression and information loss in causal
representation, but by the pragmatics of linguistic communication. The most plausible candidate to fill this role is Grice’s maxim of
quantity (Grice, 1975), according to which a speaker should strive to be as informative as possible without providing any unnecessary
information. In fact, we regard such maxims as highly amenable to our framework: much of what we have claimed can be seen as a
formalization of Gricean ideas, which we return to in the General Discussion. Nonetheless, our own claims are more general insofar as
they pertain to causal representation generally, not only to interpersonal, linguistic communication. For this reason, in a follow up to
Experiment 4, we asked participants to describe what they themselves had learned, rather than selecting the most apt summary to
present to another person. We sought to test whether participants would, as predicted by our account, produce more compressed
representations when VOLI was zero and the amount of information loss inherent in compression is low. Experiment 5 also goes

Fig. 6. Evaluations of Causal Claims by VOLI and Information Loss. Note: Bar plots showing mean evaluations in Experiment 4 (with 95% confidence
intervals) of causal claims as a function of loss for participants assigned to the zero-VOLI condition (a) and the positive-VOLI condition (b). Triple
asterisks indicate significant within-participants differences at the 0.001 level in a mixed ANOVA. Mixed ANOVA found that when the VOLI
associated with compression is zero, there was no significant difference between Compressed and High

(
η2 = .001, p = .847

)
. There was a signif-

icant interaction effect between: i) the between-subjects difference in whether compression was achieved by coarsening a causal variable or
removing a background variable, and ii) the within-subjects difference between evaluations of Compressed and High (η2 = .011, p = .017). When
VOLI is strictly positive, there was a significant difference between Compressed and High (η2 = .175,p < .001). There was also a significant effect of
the interaction between the amount of information lost due to compression and the vignette shown to participants (η2 = .017, p = .047), and a
significant interaction effect between the between-subjects difference in information loss due to compression and the within-subjects difference
between evaluations of Compressed and High (η2 = .015, p = .005).
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beyond prior experiments in requiring participants to generate their own representation, rather than select between provided options.

6.1. Participants

Participants were 400 adults recruited via Prolific. An additional 20 participants were excluded for failing comprehension checks.19

6.2. Materials and procedures

As in Experiment 4, we presented participants with the results of fictional experiments involving headache medications or training
programs for new employees (see Table 5), making only slight changes to the structure of the training vignette in some conditions.
Participants were also told that their manager had instructed them to only stock a medicine/recommend a certain program if its
effectiveness was above a threshold y. This enabled us to perform all of the same between-participants manipulations of the scenarios
as in Experiment 4. Participants were then asked questions A1-A4 from Experiment 4. Participants who answered these questions
incorrectly were given a second chance to answer and were excluded if they answered incorrectly a second time. Participants were then
prompted: “please summarize in a few sentences what you have learned about the efficacy of [active ingredients in headache med-
icines/different kinds of training programs].” Below this prompt they were presented with a text field that required them to input at
least fifty characters.

Text responses were coded by two independent researchers, according to a pre-registered rubric. The four codes that coders could
assign, along with a typical example of the kind of response that would receive each code, is shown in Table 6. (For the full coding
rubric, see the pre-registration.) Note that it was possible for a response to receive none of these codes (e.g., if a participant responded
by saying ‘I did not learn anything,’ then their response did not receive any code). It was also possible for a response to receive multiple
codes.

The coders were in agreement with respect to the appropriate codes to assign to 69.75% of all responses. Disagreements were
resolved through discussion. As pre-registered, we report here estimates of Cronbach’s measure of reliability (i.e., Cronbach’s alpha),
which were: 0.589 (95% CI: [.500, 0.663]) for judgements as to whether a response warranted Code 1, 0.796 (95% CI: [.751, 0.832])
for judgements as to whether a response warranted Code 2, 0.775 (95% CI: [.726, 0.815]) for judgments as to whether a response
warranted Code 3, and 0.840 (95% CI: [.805, 0.868]) for judgments as to whether a response warranted Code 4.

6.3. Results

Fig. 7 shows the proportion of responses receiving each of the four codes described above under the condition that VOLI is zero or
that VOLI is strictly positive. We constructed four binary variables representing whether or not a response was assigned each of the four
codes, and performed logistic regressions for each variable against independent variables representing: i) whether VOLI was zero or
strictly positive, ii) the amount of information loss inherent in compression, iii) the vignette shown to participants, iv) whether
compression was achieved by coarsening a causal variable or removing a background variable (proportionality vs. stability), and v) all
interaction terms between all independent variables.

The binary variable representing whether the Value of Lost Information is zero or strictly positive was the only significant predictor
of: i) whether a response received the code COMPRESSED-EXPLICIT (β = − .909,p = .014),20 ii) whether a response received the code
DIFF (β = .735,p = .023),21 and iii) whether a response received the code HIGH (β = .735,p = .006). There were no other significant
effects (see Table 7). Overall, participants generated more compressed responses when VOLI was zero (vs. strictly positive), and more
DIFF and HIGH responses when VOLI was strictly positive (vs. zero).

Table 7 shows logistic regression coefficients and p-values for the logistic regressions for each of the four coding variables for both
the independent variable representing whether compression is achieved by coarsening a causal variable or eliding a background
condition and the variable measuring the amount of information loss inherent in compression. In all cases, we see no significant
relationships.

6.4. Discussion

The results of Experiment 5 replicate the finding from Experiment 4 that manipulating the decision-theoretic value of the infor-
mation that is lost when moving from a more detailed to a more compressed causal representation of some data-generating process
changes agents’ propensity to generate more or less compressed representations of that process. When the decision-theoretic value of

19 Unlike in Experiment 4, we did not ask participants to state whether statements B1-B4 were true or false, with participants who answered
incorrectly excluded. This decision is motivated by the finding, in Experiment 4, that this exclusion criterion led to a high number of exclusions
without changing the overall pattern of results.
20 The three-way interaction between the three independent variables representing the vignette shown to participants, the amount of information
loss inherent in compression, and the decision-theoretic value of lost information was left out of this regression, since including it leads to perfect
separation and a failure of logistic regression.
21 The four-way interaction between all independent variables was left out of this regression, since including it leads to perfect separation and a
failure of logistic regression.
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the information lost in compression is zero, participants tend to give more compressed representations of the data-generating process
that do not make fine-grained distinctions between the efficacy of different possible interventions on that system, even when those
distinctions are explicitly present in the data they are asked to analyze. By contrast, when the decision-theoretic value of the information
lost in compression is positive, participants tend to give more fine-grained accounts of what they learned about a data-generating
process, holding fixed all other factors about the data that they are shown. However, unlike in Experiment 4, we do not find a sig-
nificant effect of the amount of information lost on participants’ responses when the value of the information lost is zero. As in previous
experiments, we did not see a significant effect of how compression was achieved (i.e., proportionality versus stability) on the types of
causal representations that participants produced in an open-ended setting. This suggests once again that judgments of both pro-
portionality and stability can be understood in terms of the value of the information lost in a compression of one’s causal model of the
environment, in relation to a particular decision context.

Note further that because participants did not have access to the data that they were summarizing when writing their open-ended

Table 6
Codes assigned to open-ended responses in Experiment 5, with typical instances of each code.

Code Gloss Typical Instance

Compressed-
Implicit

Captures a more compressed representation, where collapsing across
sub-types (e.g., Type 1 and Type 2 Reptol) is implicit.

“Reptol causes reductions in the severity of headaches.”

Compressed-
Explicit

Captures a more compressed representation, where collapsing across
sub-types (e.g., Type 1 and Type 2 Reptol) is explicit.

“Reptol of either type is effective in reducing the severity of
headaches” or “Reptol is effective at reducing the severity of
headaches whether it is taken with or without food”

DIFF Captures a less compressed representation by differentiating between
sub-types (e.g., Type 1 and Type 2 Reptol).

“Type-1 Reptol is more effective than Type-2 Reptol” or “Reptol taken
with food is more effective than Reptol taken without food.”

High Captures a less compressed representation by focusing on the sub-type
that maximizes the probability of the effect the between sub-types (e.
g., Type 1 Reptol).

“Type-1 Reptol causes reductions in the severity of headaches” or
“Reptol causes reductions in the severity of headaches when taken
with food.”

Fig. 7. Proportion of Responses Receiving Each Code by VOLI Condition. Note: Proportion of participant responses receiving each code in each VOLI
condition, with 95% confidence intervals. A single asterisk represents significance at the 5% level, and double asterisks represent significance at the
1% level.

Table 7
Logistic regression coefficients and p-values for the independent variables representing the mode of compression in the vignette shown to a
participant (proportionality versus stability) and information loss inherent in compression, for each of the four binary coding variables.

COMPRESSED-IMPLICIT COMPRESSED-EXPLICIT DIFF HIGH

Variable β p β p β p β p

Mode of Compression − 0.257 0.210 0.359 0.268 − 0.227 0.502 − 0.354 0.186
Information Loss 0.217 0.964 − 0.876 0.921 − 7.827 0.334 − 6.417 0.317
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responses as to what they learned about the causal system described in the stimuli, one can understand the granularity of these open-
ended responses as indicative of how different causal features of the data were encoded in participants’ memories, and then reported to
reflect what they had learned (versus what they would share with a colleague). Thus, the results of this experiment suggest that
participants were more likely to encode more compressed causal summaries of data in their memory when doing so would not result in
the loss of valuable information. This provides more direct evidence for our claim that our model explains not just the granularity of
people’s linguistic representation of causal structure in the context of interpersonal communication, but also their mental represen-
tation of the same structure. That said, Experiment 5 still involved some element of communication insofar as participants were
providing responses for experimenters. Among other things, Experiment 6 takes a step farther away from representations in the service
of interpersonal communication, demonstrating effects of information loss on compression in other forms of representation.

7. Experiment 6

Experiments 1–3 found that participants favored more compressed representations when the amount of information lost in
compression was zero. This suggests that, all else being equal, participants assign some cost to storing a less compressed representation.
Experiments 4–5 found that participants favored more compressed representations when the value of information lost in compression
was zero. This suggests that the more valuable the information lost, the more willing participants should be to incur the represen-
tational costs of storing a less compressed representation. Schematically, this relationship between the cost of compression, on the one
hand, and the value of lost information, on the other, can be written as follows:

Propensity to Form Compressed Representation ∝Cost of Non-Compression − VOLI.

It follows from these observations that it should be possible to manipulate the propensity to form compressed representations not
only by manipulating VOLI (as we did in Experiments 4–5), but also by manipulating cost. In Experiment 6, we do precisely this, and
find that participants are more inclined to store a compressed representation of a data set when: i) compression is less costly, and ii) the
amount (and therefore, the value) of the information lost in compression is lower. In contrast with Experiments 1–4 (and potentially
Experiment 5), our key dependent variable does not involve interpersonal communication on a participant’s part. Rather, it directly
measures the level of compression at which an agent chooses to store information about a data set.

7.1. Participants

Participants were 202 adults recruited via Prolific. An additional 29 participants were excluded for failing comprehension checks.
The sample of participants was 50% female and 50% male, with an age range of 18–76 and a mean age of 36.

7.2. Materials and procedures

Participants were told that they would be playing a role-playing game (RPG) in which their character began the game with 1000
health points and 1000 gold coins, and where the goal of the game was to end with as many health points and gold coins as possible.
They were also told that over the course of the game, their character might sustain damage, reducing their total health points. To regain
health points, they would be able to use gold coins to purchase remedies. Each remedy has a numerical strength, from 0 to 100, where
the remedy’s strength denotes the number of health points that can be regained by taking the remedy. To illustrate, if a participant’s
character has 800 health points after sustaining damage, and takes a remedy with a strength of 50, then the character will have 850
health points after taking the remedy.

Participants were shown a table with a list of remedies that they would potentially be able to buy, along with the strength of each
remedy. The contents of each table depended on whether the participant had been randomly assigned to a “low loss” or “high loss”
condition, and are shown in Table 8. The “low loss” condition is so-named because if this table were to be compressed into one that only
compared the strength of mushrooms and flowers, less information about the differential strengths of remedies would be lost than if the
same compression were performed in the “high loss” condition.

Participants were told that, later in the game, they would not have access to the information in the table they were shown, even
though that information would be relevant. However, they would be able to use gold coins to purchase one of two note cards sum-
marizing the data in the table. They would have access to the information on their purchased note card throughout the course of the
game. Those two note cards, along with their costs, were as follows:

More Compressed: “Mushrooms are stronger than flowers.” Cost: 100 Gold Coins.
Less Compressed: “Green mushrooms are strongest, followed by yellow mushrooms, then purple mushrooms, then yellow flowers,
then red flowers.” Cost: [100/120] Gold Coins.

The cost of the less compressed note card was manipulated between participants, and set to either 100 or 120 gold coins, to reflect
an additional cost of a less-compressed data representation of either 0 or 20. We predicted that, due to the increased loss of valuable
information in the high loss category, participants would choose the less compressed causal representation more often in the high loss
condition than in the low loss condition. We predicted further that this difference would be most pronounced when there is a positive
cost to storing a less-compressed data representation; when storing less-compressed data comes with an explicit cost, agents will be
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more likely to incur that cost when doing so enables them to store a greater amount of valuable information.
In the remainder of the experiment, we told participants that their character had incurred damage, and then asked them to state

how many gold coins they were willing to pay for a yellow mushroom to counteract that damage. They had access to the information
on their purchased note card when making this decision. They were then asked to rate how helpful they found their note card, and then
asked if they could recall the strength of each remedy from the table they were shown. These subsequent dependent variables were
collected for exploratory purposes, but were not part of our core analysis, which concerns participants’ choice of note card.

7.3. Results

Fig. 8 shows the proportion of participants selecting the less-compressed causal representation as a function of both the additional
cost of the less compressed representation and the amount of valuable information lost in compression. As is clear from the figure,
when there is no additional cost to storing a less compressed causal representation, a large majority of participants elect to do so.
However, once there is a substantive cost to storing a less compressed causal representation of data, we see significant variation as to
which representation participants are willing to select, with participants much more likely to select the more compressed represen-
tation when the amount of valuable information lost in compression is low.

We performed a binary logistic regression for a dependent variable representing whether or not a participant chose the less
compressed data representation, regressing that variable against: i) the additional cost of the less compressed representation (Cost),
and ii) a binary variable representing whether a participant was assigned to the low and high loss condition (Loss). The low loss
condition was coded as − 1 and the high loss condition was coded as 1. We found that both variables were significant predictors of
whether or not a participant chose the less compressed representation (Cost: β = − .116, p < .001; Loss: β = .602, p = .001); par-
ticipants with an additional cost of storing a less compressed representation were, all else being equal, less likely to do so, while
participants in the high loss condition were, all else being equal, more likely to store a less compressed representation of the data, in
keeping with our predictions. (In the Supplemental Materials, we report the results of another version of this experiment that replicates
the effect of manipulating the cost of a less-compressed causal representation on participants’ propensity to store such a represen-
tation, but does not find a significant effect of the overall value of the information lost in compression on participants’ choice as to the
level of compression at which they represent data.).

7.4. Discussion

The results of this experiment provide strong evidence that both the cost of storing a less compressed representation and the amount
of valuable information lost in compression affect people’s propensity to store more or less compressed representations of their
environment. Unlike Experiments 1–4 (and perhaps Experiment 5), the results of Experiment 6 cannot be explained in terms of
participants adhering to communicative norms, as their selection of a note card summarizing the data for use later in the game was not
an act of interpersonal communication, but was instead a choice about how to store information at a particular level of compression.
One can view the choice of note card as a choice on the participant’s part about how to represent the information in the data that they
were shown within their extended mind (Clark& Chalmers, 1998) for subsequent use in navigating the environment of the role-playing
game or as a “pragmatic action” that the agent performs to change their own computational state (Kirsh & Maglio, 1994). Thus, the
results of Experiment 6 speak in favor of our argument that agents choose causal representations by weighing a preference for
compression against a desire to retain decision-theoretically relevant information.

The results of Experiment 6 also speak to a potential alternative explanation of the findings from Experiments 4–5. The alternative
explanation is that our findings do not reflect our posited trade-off between compression and the value of information, but instead
reflect the effects of adding a new feature (e.g., whether a medicine should be stocked) to a classification task. Specifically, Waldmann
and Hagmayer (2006) show that participants presented with identical data about the causal capacities of exemplars nonetheless make
different attributions of causal capacity depending on the categories they bring to the task and use to classify the exemplars. If the
mechanisms identified by Waldmann and Hagmayer are applied to Experiment 4, for example, then the four ingredients in the
pharmaceutical example could be described as possessing the features shown in Table 9, where our manipulation of decision-theoretic

Table 8
Data shown to Participants in Experiment 6.

Low Loss High Loss

Remedy Strength Remedy Strength

Green Mushroom 82 Green Mushroom 99
Yellow Mushroom 81 Yellow Mushroom 81
Purple Mushroom 80 Purple Mushroom 63
Yellow Flower 19 Yellow Flower 35
Red Flower 17 Red Flower 1
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threshold (50% vs. 80%) plays the role of an additional feature (stocked in the pharmacy or not) that shapes the categories participants
use to classify exemplars. The two types of Reptol would then be grouped together when and because they both share the feature of
being stocked at the pharmacy, rather than because of any effect of the change in value of the information lost in compression brought
about by manipulating the decision-theoretic threshold. However, a similar analysis cannot be used to explain the results of Experiment
6, since the cost of a less-compressed representation is not a feature of any of the remedies that participants compress over (e.g.,
changing the cost of the more detailed note card from 100 gold coins to 120 gold coins does not change any features of a yellow
mushroom).22

8. General discussion

As established in the introduction, representing a causal system involves a trade-off between informativeness and compression.
How do agents manage this trade-off? In this paper we have put forward a theoretical framework, using the formal apparatus of
Bayesian networks and information theory, that quantifies how much information is lost in the move from a less compressed causal
representation of an agent’s environment to a more compressed representation of the same environment. We propose that agents trade
off an all-things-considered preference for compression against a desire to avoid losing information due to compression. In so doing, we
are also able to offer a unified account of the proportionality and stability of causal claims.

Experiments 1 and 2 support this part of our proposal. They show that when no information is lost in compression, people prefer
causal claims embedded in more compressed models to those embedded in less compressed ones. When information loss due to
compression is modest, we do not see a significant difference in peoples’ evaluations of claims embedded in more and less compressed
models. By contrast, when information loss due to compression is considerable, we see a strong preference for causal claims that are
embedded in less compressed, more detailed causal models. Whether compression was achieved by coarsening a causal variable
(proportionality) or removing a background condition (stability) did not make a significant difference with respect to participants’
evaluations of causal claims, suggesting that our theoretical framework provides a unifying account of these important dimensions
along which causal claims can be compared. Experiment 3 further corroborated this part of our proposal, while also showing that our
account is able to explain results that are less well-explained in terms of causal contrast.

We further elaborated our framework by considering how decision-theoretic factors may influence agents’ preferences over causal
claims. Specifically, we introduced a framework for quantifying the value of the information lost in the move from a less compressed
causal representation to a more compressed representation of the same environment, for an agent in a particular decision context. This
allowed us to state precisely whether the information lost in a given compression is or is not valuable to a particular agent, in keeping
with the broader theory that an agent’s construal of the causal structure of their environment is fundamentally informed by the
prudential values of that agent. We tested this aspect of our framework in Experiments 4–5, which found that when participants

Fig. 8. Proportion of participants in Experiment 6 choosing a less compressed data representation, by level of information loss and the additional cost of a less
compressed representation. Note. Bars show 95% confidence intervals for proportions.

Table 9
Putative features of the four causes in the pharmaceutical vignette of Experiment 4.

Ingredient p(e|c) (i.e., Effectiveness) Stocked at Pharmacy?

Type-1 Reptol 0.85/.98 Yes
Type-2 Reptol 0.7 Yes/No
Type-1 Psylo 0.01 No
Type-2 Psylo 0.01 No

22 It is also worth noting that while the mechanism identified in Waldmann and Hagmayer (2006) could explain why participants were influenced
by the threshold manipulation in Experiments 4–5, it is not clear how it could explain the interaction with information loss that was also observed in
Experiment 4.

D. Kinney and T. Lombrozo Cognitive Psychology 155 (2024) 101682 

26 



evaluate causal claims, they engage in a trade-off between a preference for compression and a preference for valuable information,
where the value of information is determined by the decision-theoretic context in which a particular data-generating process is
presented to participants. Importantly, this preference for valuable information is continuous; in Experiment 4, we found that the
greater the amount of valuable information lost in a compression, the more negatively participants evaluate a compressed causal claim.
In keeping with our hypothesis, discussed in the introduction, that human agents are capable of selecting from among different possible
causal models of their environment to fit a specific context, the results of Experiment 4 suggest that this selection process is strongly
influenced by the decision-theoretic structure of a given context in which a mental causal model is deployed.

Finally, we noted that, while we took our dependent variables in Experiments 1–4 to measure the extent to which participants were
representing their environment at a given level of compression, they may be alternatively interpreted as reflecting solely communi-
cative norms. To bolster the case for a representational interpretation of our findings, Experiment 5 involved open-ended reports of
what participants had learned, and we additionally conducted Experiment 6, which measured the effect of both the cost of a less
compressed representation and the value of the information lost in compression on a variable that is much more plausibly interpreted
as measuring participants’ representational preferences than their interpresonal communicative ones. This experiment found a sig-
nificant effect of both the cost of a less compressed representation and the value of the information lost on participants’ propensity to
represent data at a certain level of compression.

The overall takeaway from our six experiments is as follows. When agents represent the causal structure of their environment, they
have an extremely wide latitude with respect to how compressed that representation should be. Ultimately, the level of compression
that an agent chooses for such a representation is determined by a trade-off wherein agents seek to minimize the loss of valuable
information while maximizing compression. We note that in Experiment 5, we do not see a significant effect of the amount of infor-
mation lost in compression on participants’ preferences as to the level of compression at which they represent data. Thus, based on the
data collected here, we take it to be something of an open question whether, when a particular decision context is specified, minimizing
the loss of information involves a continuous preference for less information loss when the information loss is valuable (as observed in
Experiment 4), or a categorical preference for representations in which the value of lost information is zero and against representations
in which the value of lost information is positive (as observed in Experiment 5). We speculate that information loss is likely to play some
role even when the value of information is zero, given both the results of Experiments 4 and the fact that agents may have uncertainty
regarding their own prudential values, or anticipate that their values might change. What is clear is that the tradeoff between
informativeness and compression holds independently of whether compression is achieved by coarsening a causal variable or eliding a
background condition. This suggests a common framework for understanding these two salient varieties of compression.

Finally, it is worth noting that while our discussion here pertains to explicitly causal representations of data-generating processes, it
may be extended further to include non-causal predictive models that might be used in agential representation of the environment and
cognition. As long as these models use random variables and involve predicting a particular outcome of interest, much of the formal
apparatus and experimental paradigms developed here will remain applicable. Thus, we hope that our results here have provided a
general framework for thinking through the relationship between information loss, compression, and prudential values as the chief
drivers of the processes whereby humans and other agents construct formal representations of their environment, for use in both
navigating and intervening upon the world in which they live.

8.1. Relationship to existing model selection techniques

In statistics, the tradeoff between model simplicity and informativeness is most commonly understood through the lens of various
“information criteria” used for model selection (Akaike, 1998; Schwarz, 1978). Indeed, there are similarities between our discussion of
causal model selection and the much larger statistical literature on model selection via information criteria, in which the fundamental
tradeoff is between selecting a model that captures all the data and a model that contains a small number of parameters (for relevant
work on these trade-offs in human judgments, see Blanchard, Lombrozo, & Nichols, 2018 and Johnson, Valenti, & Keil, 2019).
Nevertheless, there are also important differences. First, when we coarse-grain a causal variable in a model and leave the rest of the
model unchanged, we do not necessarily change the number of statistical parameters in the model (e.g., the probability distribution
over a continuously-valued variable may have the same number of parameters as a distribution over a discretization of that variable),
though such coarsening may change the parameters that maximize the likelihood of the data. Nevertheless, in our framework a model
with a more coarse-grained variable is considered to be more compressed, all else being equal, than the same model with a more
fine-grained version of the same variable. In addition, we trade off compression or simplicity against the amount of information shared
between causes and their effects, rather than the likelihood of a model given some set of observed data. Our measure is meant to be
applied in cases where more and less compressed models of some system are all well-supported by data, and yet there is nevertheless a
trade-off between the simplicity of a model and the informativeness of cause-effect relationships within that model. That said, there are
likely conditions under which our framework and other statistical techniques for model selection will make similar recommendations.
We leave it to future work to examine these conditions in depth.

8.2. Limits of the current study

While we take our experimental results to confirm the theoretical framework presented, we acknowledge that they have some
important limitations. As noted at the outset, we focus on qualitative predictions derived from principled measures of compression and
information loss, but we do not claim that our specific measures correspond to the algorithms by which humans compute these
quantities. This leaves it to future work to develop and test quantitative process models. Additionally, our experiments were conducted
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solely on U.S.-based participants recruited through on-line platforms, and so we are limited in the extent to which we can generalize to
all agents faced with the task of creating causal models of the world. In particular, it is a largely open question whether individual
scientists or groups of scientists would instantiate the same trade-offs observed here. In addition, our results are constrained to
relatively simple causal scenarios that can be presented and understood in a matter of minutes, such that our results are of less sig-
nificance in understanding deliberative, detailed causal understanding. This is a notable limitation if – as seems likely – variable choice
interacts with information search in a dynamic process of inquiry, whereby current representations guide interventions, which in turn
generate the data that revise representations. Investigating this interactive process is an important direction for future research.

Although this issue is addressed to a large degree by Experiments 5–6, one could still worry about the extent to which our pre-
dictions differ from what one might predict simply by assuming that listeners take speakers to follow Grice’s maxim of quantity, which
states that speakers should utter all and only the information relevant in a given context (Grice, 1975). In particular, if we assume that
our manipulation of value-of-information thresholds affects what speakers take to be relevant, then speakers should utter less detailed
claims (i.e., more coarse-grained claim) when the details they omit are irrelevant, and more detailed claims (i.e., more fine-grained
claims) otherwise. This is consistent with what we observe in Experiment 4. However, the findings from Experiments 1, 2, and 4
highlight important ways in which our framework goes beyond – though is not inconsistent with – this basic Gricean idea. First, all
three of these experiments demonstrated a graded effect of information loss on the granularity of causal claims, with more fine-grained
representations becoming increasingly frequent as information loss increases. One sees a similar effect of the value of information in
Experiment 4: restricting to just those cases where the value of information is positive, one sees a preference for more detailed, fine-
grained causal claims as the amount of valuable lost information increases. Thus, information loss and the value of information offer a
continuous quantification of the less precise and typically binary term “relevance,” and our findings lend it support. Finally, Exper-
iment 6 finds predicted effects on a form of representation (a personal memory aid) that does not have an interpersonal, communi-
cative function. This is consistent with our focus on effects of compression and the loss of valuable information on causal
representation quite generally, rather than interpersonal linguistic communication in particular.

8.3. Directions for future work

The current results suggest several intriguing avenues for future work that would generalize our findings to other areas of psy-
chology. One such avenue emerges when we consider that the human capacity for compressed representation of causal structure begins
very early in life. Future work in developmental psychology could show whether the process of selecting compressed representations of
formal structure is fundamentally goal-oriented in very young humans. If this is the case, it would lend further support to the theory
that our early-emerging and core commitments regarding the causal structure of data-generating processes are shaped by our prag-
matic goals as agents.

Another intriguing line for future research concerns the psychology of social categorization. When we group people into categories
such as race or gender, we situate them within a socially-constructed causal nexus based on group stereotypes. Our choices of social
categories used to classify people are extremely ethically fraught, such that understanding why we group people in the particular ways
that we do is a central goal of social psychology. If we are correct in thinking that the classification schema used in causal reasoning
generally are downstream of our prudential goals as agents, then work in social psychology might establish that the same holds for
social classification. This could yield a new analysis of the ethics of stereotyping, according to which the moral valence of a particular
classification schema for individuals is tied to the moral valence of the prudential goals that led to that schema (in fact, see Kinney &
Lombrozo, 2024, for recent evidence to this effect).

On the formal and mathematical side, as acknowledged above, our measure of information loss is an application of rate distortion
theories developed in other areas of cognitive science. In rate distortion theories, one often finds a setting of parameters such that
agents’ preferences over more and less distorted or compressed information channels follow a “rate distortion curve” showing the
optimal level of distortion (Zaslavsky et al., 2018). A potentially fruitful formal project would involve spelling out, in full formal detail,
how our measure of information loss can be re-stated as a rate distortion curve, with the decision-theoretic value of information being
used to set key parameters that determine the shape of the curve. Such a formal study would amount to a significant unification of the
literature in rate distortion theory and the literature on causal variable choice.

Finally, we note that the vignettes used in all our experiments only include cases where the causes in question generate their effects;
we do not ask participants about cases in which the causal relationship of interest is one where the occurrence of some cause prevents
the occurrence of some effect. We believe that such cases can be accommodated by our formal model: if the values of an effect variable
E each represent the non-occurrence of some effect, rather than the occurrence thereof, then one could calculate information loss
between such an effect variable and different causal variables without any change in our mathematical approach. However, it is
possible that participants would respond differently to versions of the experiments presented in the current paper if the causal re-
lationships described were preventative rather than generative. Running these kinds of experiments would be an intriguing avenue for
future work, especially since any observed differences between the predictions of our model and the results of such experiments would
require at least some revision of the current theory.

These potential directions for future research, alongside our analysis of the results of the current studies, speak to the fruitfulness of
our theoretical approach that combines information theory and decision theory to offer a unified analysis of causal structure selection
in cognition. We believe that future applications of this approach may lead to a more comprehensive understanding of the relationship
between goal-setting, planning, and representation of the environment in humans, non-human animals, and artificially intelligent
agents.
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9. Conclusion

We have proposed a theoretical framework for measuring the amount of information lost in the move from a less-compressed to a
more-compressed causal model of an environment. This framework allows us to give a unified account of the proportionality and the
stability of causal claims. This framework can additionally quantify and incorporate the decision-theoretic value of the information that
is lost in compression. Over the course of six experiments, we demonstrated the empirical adequacy of this framework in predicting
people’s evaluation and generation of causal claims. This suggests that, as per our hypothesis, human representations of the causal
structure of the environment trade-off valuable information against compression in a context-dependent way.
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Appendix A

In this appendix, we provide our full formal framework for measuring the amount of information that is lost in the move from one
Bayesian network representing the causal structure of some system to a second Bayesian network, where this second Bayesian network
amounts to a more compressed representation of a given target system than the first. This allows us to state precisely our claim that
both the proportionality and stability of a causal claim can be defined in terms of information loss between causal models. It also
provides the theoretical framework within which our first three experimental paradigms are situated.

Variables, coarsenings, and causal Bayesian networks

We begin with a probability space, which is a triple (Ω,Σ, p) in which Ω is a sample space of primitive possibilities (i.e., a set of
possible worlds), Σ is an algebra on Ω (i.e., a set of subsets of Ω that is closed under union, complement, and intersection), and p is a
probability distribution on Σ that satisfies the Kolmogorov axioms. A random variable X : Ω→RX is a function from the sample space
into some set RX (i.e., the range of the random variable). As stated in the introduction, in this paper we assume that random variables
are surjective but not injective functions on the sample space, meaning that multiple possible worlds are often mapped to the same
value of a random variable. This clarifies one sense in which representations that use random variables are compressions of their
targets; they clump together many possible observations under a single label. A random variable is said to bemeasurablewith respect
to a probability space (Ω,Σ, p) if and only if for any x ∈ RX, X− 1(x) ∈ Σ. This allows us to assign a probability to the event that the
variable X takes the value x, using the equation p(X = x) = p

(
X− 1(x)

)
.

For any random variable X that is measurable with respect to a probability space (Ω,Σ, p), let ∼X be an equivalence relation defined
on Ω such that ω∼Xωʹ if and only if X(ω) = X(ωʹ). A random variable X̂ is a coarsening of X if and only if, for any ω,ωʹ ∈ Ω: i) if ω∼Xωʹ

then ω∼X̂ωʹ, and ii) there exists an ω,ωʹ ∈ Ω such that ω∼X̂ωʹ and ω≁Xωʹ. If X̂ is a coarsening of X , then X is a refinement of X̂. The
definition of coarsening captures the intuitive idea that coarser-grained random variables define a more general compression of the
possibility space on which they are defined than their more fine-grained counterparts. That is, all possibilities treated as equivalent by
a random variable X are also treated as equivalent by its coarsening X̂, but some possibilities treated as equivalent by X̂ are not treated
as equivalent by X.

Moving to the use of Bayesian networks to represent causal structure, let V P be a set of random variables that are each measurable
with respect to a probability space P = (Ω,Σ, p). Let E V P

be an acyclic set of ordered pairs, or edges, relating the variables in V P .
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These are represented pictorially as arrows in the causal graph depicting relations of direct causation from one variable to another. A
causal Bayes net G P is a pair (V P ,E V P

) that satisfies the following conditions:

1. According to the probability distribution p in the probability space P with respect to which the Bayes net is defined, all variables
are independent of their non-descendants, conditional on their parents (Markov condition).

2. There is no set of edges E
*
V P

⊂E V P
such that (V P , E

*
V P

) satisfies the Markov condition (Minimality condition).
3. No element of V P is a coarsening of or identical to any other element of V P (Co-possibility condition).

The Markov and Minimality conditions formalize the idea that the value of each variable in a causal Bayes net is determined by all
and only its parents (i.e., its direct causes), plus an exogenous source of error not accounted for in the Bayes net and not correlated with
the error in any other variables. The Co-possibility condition ensures that all functional relationships between variables in a causal
Bayes net are indeed causal, rather than logical, in nature.

An important feature of a causal Bayes net is that it allows us to calculate the probability distribution over the variables in the Bayes
net given one or more hypothetical interventions setting the value(s) of variables in the Bayes net, in keeping with the “do-calculus” of
(Pearl, 2000). For any given causal Bayes net G P , we can calculate the probability distribution over any variable V in the set V P ,

given an intervention setting some set of variables X to some set of values x , using the following formula:

pG P
(v|do(x) ) =

⎧
⎨

⎩

p
(
v
⃒
⃒parG P

(V)
)

1
0

if V ∕∈ X
if V ∈ X and v is consistent with x

otherwise

Where parG P
(V) denotes the values taken by the parents of V in G P . The idea here is that when the variable that the distribution is

defined over is not intervened upon, the distribution is determined solely by the value taken by the parents of that variable. In practice,
these values are not always known, but may be known if the variable(s) intervened upon include parents of the variable over which the
distribution is defined. Where parents are not known, they are marginalized over. This allows us to derive the probability distribution
that would be defined over any variable in the causal Bayes net, if any other variable in the same causal Bayes net were set to some
value via an exogenous, “surgical’’ intervention on the data-generating system.

For any given causal Bayes net, we can define an equivalence relation ∼V P
on the sample space Ω, such that ω∼V P

ωʹ if and only if
for all V ∈ V P , V(ω) = V(ωʹ). A causal Bayes net G P = (V P ,E V P

) is a more compressed representation of a given target process
than an alternative causal Bayes net G

’
P =

(
V ’

P ,E V ’
P

)
if and only if: i) for any ω,ωʹ ∈ Ω , if ω∼V ʹ

P
ωʹ, then ω∼V P

ωʹ and ii) there exists
an ω,ωʹ ∈ Ω, such that ω∼V P

ωʹ but ω≁V ʹ
P

ωʹ. Thus, in an analogy to the coarsening-of relation between variables, a more compressed
Bayes net defines a more general equivalence relation over the sample space than a less compressed Bayes net defined over the same
sample space and representing the same underlying dynamics.

Measuring information loss

We are now in a position to introduce a formal measure of the amount of information that is lost about an effect of interest E, with
respect to some sets of causal variables of interest C and Ĉ, when we move from one Bayes net G P to a more compressed Bayes net Ĝ P

representing the same data-generating process. Specifically, we define an information loss function L
(
G P , Ĝ P ,C, Ĉ ,E, q

)
as follows:

L
(
G P , Ĝ P ,C, Ĉ ,E, q

)
=

∑

c
q(c)

∑

e
pG P

(e|do(c) )log2
pG P

(e|do(c) )
pG P

(e)
−
∑

ĉ
q(ĉ)

∑

e
pG P

(e|do(ĉ) )log2
pG P

(e|do(ĉ) )
pG P

(e)

The probabilities q(c) and q(ĉ) are respectively interpreted as the probability of an intervention setting the variables in C to the vector
of values c and the probability of setting the variables in Ĉ to the vector of values ĉ.

Measuring proportionality using information loss

Recall that one way of moving from a causal Bayes net G P to a more compressed Bayes net Ĝ P is by replacing a variable C in the
graph G P with its coarsening Ĉ, and leaving all other variables unchanged. By measuring the amount of information that is lost in the
move from G P to Ĝ P , we can compare the amount of information that C communicates about some effect variable E to the amount of
information that Ĉ communicates about the same variable E, thereby comparing the causal claims ‘C causes E’ and ‘Ĉ causes E’ with
respect to their proportionality.

More precisely, let G P =
(
G P

1, ...,G P
n) be a sequence of causal Bayes nets, such that the only difference between two causal

Bayes nets G P
i and G P

i+1 is the replacement of a single variable with a coarsening thereof. This yields a sequence of variables C =

(C1,⋯,Cn), with each Ci a variable in the causal Bayes net G P
i and a coarsening of all variables Cj<i. We then say that, in the context of

a such a sequence, a variable Ci is proportional with respect to an effect variable E to the extent that L

(
G

j
P ,G

i
P
,
{

Cj

}
, {Ci

}
,E, q

)
is

relatively small for all j < i. That is, proportional choices of causal variables are those that preserve information about the conditions
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under which an effect variable E will change, as compared to more fine-grained alternatives.

Measuring stability using information loss

Recall from our earlier discussion that we can measure the stability of a causal relationship C→E embedded in a particular causal
Bayes net by removing a set of variables B from that Bayes net and assessing how much information is lost in the move from the original
Bayes net to the Bayes net that is created by removing the background variables. This claim can now be made precise, using our
proposed measure of information loss. Let G P = (V P ,E V P

) be a causal Bayes net containing a cause C, an effect E, and a set of
background variables B. Let G P

− B =
(
V P

− B,E V P
− B
)

be a causal Bayes net with the same structure as G P , but with all variables in B
and all edges going into or out of variables in B removed.23 The causal relationship between C and E is stable with respect to
background condition B to the extent that the value of L

(
G P ,G P

− B, {C} ∪ B, {C}, E, q
)

is low. That is, the relationship C→E is stable
with respect to B to the extent that the average amount of information about E that is communicated by interventions on both C and the
variables in B is similar to the average amount of information about E that is communicated solely by interventions on C.

Simulations

To demonstrate the relationship between various parameter values and the overall amount of information lost in coarse-graining,
consider a causal variable C with the range of values {c1, c2, c3}. Suppose that E is a binary effect variable with values {e1, e2} of which C
is a cause. Fixing p(e1|do(c1) ) at some value x, let p(e1|do(c2) ) and p(e1|do(c3) ) range between zero and one. Consider the case in which
we compress the variable C by mapping c1 and c2 to the value ĉ1 of a more compressed variable Ĉ, and mapping c3 to the value ĉ2 . The
amount of information lost in this compression, for all possible values of p(e1|do(c2) ) and p(e1|do(c3) ), is shown in Figure 9 for x = 0.5
and x = 1, under the assumption that q(c1) = q(c2) = q(c3) = 1/3. As can be seen from the figure, when x = 0.5, information loss is
largest for extreme values of p(e1|do(c2) ), so that there is a greater difference in the effect of c1 and the value c2 that it is conjoined with
in the compression. By contrast, when x = 1, information loss is greatest for low values of p(e1|do(c2) ).

Fig. 9. Results of simulations showing the amount of causal information lost in compression under various parametric conditions

Finally, Figure 10 shows the amount of information that is lost in the same compression when we fix p(e1|do(c1) ) = .1,
p(e1|do(c2) ) = .5, and p(e1|do(c3) ) = .9, but vary the distribution q over possible interventions on C. As should be clear from this
figure, the more that the probability density of q is concentrated on the causal values c1 and c2 that are put together during the process
of compression, the greater the overall amount of causal information that is lost in compression.

23 That is, V P
− B = V P \ B and E V P

− B = {X,Y : X ∕∈ B ∨ Y ∕∈ B}.
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Fig. 10. Results of simulations showing the amount of causal information lost in compression under various settings of the distribution q

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cogpsych.2024.101682.
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