Explanation-Seeking Curiosity in Childhood

Emily G. Liquina & Tania Lombrozob

Department of Psychology, Princeton University
Peretsman Scully Hall, Princeton, NJ, 08540 USA

aEmail: eliquin@princeton.edu

bEmail: lombrozo@princeton.edu

Corresponding Author:

Emily G. Liquin
eliquin@princeton.edu

Department of Psychology, Princeton University
Peretsman Scully Hall, Princeton, NJ, 08540 USA
Abstract

Children are known for asking “why?”—a query motivated by their desire for explanations. Research suggests that explanation-seeking curiosity (ESC) is triggered by first-person cues (such as novelty or surprise), third-person cues (such as a knowledgeable adults’ surprise or question), and future-oriented cues (such as expectations about information gain or future value). Once triggered, ESC is satisfied by an adequate explanation, typically obtained through causal intervention or question asking, both of which change in efficiency over development. ESC is an important driver of children’s learning because it combines the power of active learning and intrinsic motivation with the value of explanatory content, which can reveal the unobservable and causal structure of the world to support generalizable knowledge.
Explanation-Seeking Curiosity in Childhood

Introduction

From early in development, children exhibit curiosity about the properties [1] and names [2–4] of objects, and about visual and auditory patterns [5,6]. Moreover, they often seek explanations for their observations, and in so doing construct intuitive theories that equip them to better predict and intervene upon the world [7,8]. Here we focus on children’s “explanation-seeking curiosity” (ESC), which we define as an affective drive state [9] that motivates learning how or why something is the case [10]. We review recent research addressing two questions: (1) What triggers ESC? And (2) How is ESC satisfied?

Our focus on ESC complements two existing bodies of research. First, research has considered the epistemic power of explanations. Seeking explanations supports learning in young children [10,11], and explanations can drive subsequent exploration [12] and improve metacognition [13]. For example, when prompted to generate explanations (vs. report observations) while learning novel causal rules, preschoolers are more likely to learn causal rules that are broad [14], are simple [15], and emphasize internal properties over perceptual similarity [16]; when prompted to explain aspects of a story, 5- to 6-year-olds are more likely to extract its lesson [17]. However, this research has rarely focused on ESC—the drive state that prompts explanation search.

Second, research on curiosity (including developmental prerequisites to experiencing and expressing curiosity [18,19]) has been pursued in many contexts, including active word learning [3] and question asking [20]. Among other benefits [21,22], there is evidence that curiosity-driven exploration can be as efficient as direct pedagogy for causal learning [23] and lead to better memory for target information [24–29], and that exploration efficiency relates to IQ in
young children [30]. However, this work has typically focused on curiosity directed towards non-explanatory targets, such as facts, object labels, or object properties.

Given the epistemic power of explanation and the learning benefits of curiosity, ESC is poised to be an especially important driver of children’s learning. While it is yet unclear precisely how ESC diverges from other forms of curiosity [31,32] or fits into existing taxonomies for curiosity [e.g., 33], ESC is unique in its ability to drive the discovery of unobservables and causal structure—important foundations for generalizable knowledge. For these reasons the study of ESC is likely to lead to important insights about how (young) human learners come to know so much about the world given limited evidence, time, and cognitive resources, with potential implications for education and for the development of artificial learners, as well [34,35].

What Triggers Explanation-Seeking Curiosity?

Children encounter far more unexplained observations than they have the time or resources to pursue as targets of inquiry. In fact, there is evidence that merely lacking information is insufficient to trigger information search: in one study, 5- to 9-year-olds explored following some types of under-informative evidence, but not others [36]. Thus, both theoretically and empirically, we have reason to believe that ESC is selective, and that additional cues make some unexplained observations call out for explanation more strongly than others [37,38]. We review three categories of cues: first-person cues, third-person cues, and future-oriented cues (Figure 1). The evidence for these cues comes from studies of ESC as well as studies of curiosity more broadly; we discuss the potentially unique triggers of ESC in the Conclusions section.

First-Person Cues
First-person cues, such as surprise and novelty [39], are those that relate unexplained information to an individual’s epistemic state. We refer to these cues as first-person because observations are not intrinsically surprising or novel; they are surprising or novel with respect to a set of expectations. Indeed, recent research has clarified the first-personal (subjective) nature of these cues. Infants preferentially explore objects that violate their expectations, whether those expectations are formed on the basis of core knowledge [27], inferred rules [40], or probabilistic information [41,42]. Furthermore, infants’ exploration after an expectation violation may be specifically geared towards uncovering an explanation for that violation [43].

One proposal is that curiosity is piqued not by maximally surprising or novel information, which may be too far beyond a learner’s grasp, but by moderately surprising or novel information, which presents the best opportunity for learning [44]. Infants preferentially direct their visual attention to patterns that are moderately predictable [5, see also 6]. However, this “moderate information gap” hypothesis has been studied primarily in adult populations [e.g., 45], and has not been applied to ESC.

Third-Person Cues

Third-person cues rely on social information from others. For example, infants use others’ surprised expressions to guide visual exploration [46], and preschoolers spend more time exploring a novel toy after viewing an experimenter’s surprised expression while playing with it [47]. Adults can also highlight information through the use of pedagogical questions: questions with answers that are known to the asker, but posed to facilitate learning [48]. After a pedagogical question, children spend more time playing with a novel toy and discover more of its functions [49]. However, relying on knowledgeable others can also suppress exploration—direct pedagogy decreases preschoolers’ exploration and learning of non-target information [50],
and preschoolers (though not elementary schoolers) forgo exploration of counterintuitive claims offered by reliable sources [51].

Future-Oriented Cues

Future-oriented cues concern expectations about how acquiring information will serve the learner in the future. In one task, 4- to 5-year-olds were more likely to explore unknown rewards over known rewards *only* when the unknown rewards would inform future choices [52]. While this could be explained by reward-seeking behavior (and not curiosity), there is evidence that 4- to 5-year-olds explore a causal system more than older children and adults, but fail to exploit their knowledge to gain rewards (EG Liquin *et al.*, unpublished) [see also 53–55]. These findings cast doubt on reward pursuit as the sole motivation behind children’s future-oriented exploration. Furthermore, children sometimes pursue information that may be relevant for future action even when reward is irrelevant: in one study, children displayed greater curiosity about counterfactual outcomes that were under their control, relative to outcomes they could not have caused [56].

Future-oriented cues are in tension with approaches that define curiosity as the pursuit of information as an end in itself [e.g., 44]. In fact, in both adults [57] and non-human animals [58], curiosity has been operationalized as costly information-seeking without immediate benefit. We propose that curiosity is defined by the phenomenological *experience* of pursuing information for its own sake, even in cases where the psychological *function* of this experience is instrumental. The willingness to pursue information with no immediate benefit is good evidence that such a phenomenology is present. However, adults report experiencing curiosity even when instrumental goals are at play, and this reported curiosity is in part guided by the future utility of information [31,59–61]. Our model predicts the same for young children (and potentially for many non-human animals), but direct evidence for this claim will require moving away from
paradigms that rely on exploration as an index of curiosity, and towards paradigms that more directly measure the phenomenology of curiosity.

Figure 1. Model of explanation-seeking curiosity, including cues that trigger it (first-person cues, third-person cues, and future-oriented cues), and two methods by which it is satisfied (causal intervention and question asking).

How Is Explanation-Seeking Curiosity Satisfied?

ESC can be satisfied when the child acquires what they judge to be an adequate explanation. Children prefer explanations that are simple [62] and general [63], and that reference a moderate amount of detail [64] that is explanatorily relevant [65,66]. Children also prefer teleological explanations (which appeal to function or purpose) [67,68] and explanations that appeal to properties inherent to the thing being explained [69], though these preferences decrease across development. When children receive a non-explanatory response rather than an explanatory response, they are more likely to re-ask their original question [70] (though
children’s reactions to explanatory and non-explanatory responses are moderated by socioeconomic status [71,72] and age [73]). The perceived quality of a provided explanation predicts subsequent explanation-seeking behavior, as well [74].

Often, children are not simply offered an explanation, but must solicit an explanation, reason their way to one, or discover one for themselves. Children have many tools for eliciting information—such as pointing [4,75–77] and social referencing [78]—but these are unlikely to elicit specifically explanatory information. Causal intervention and question asking, by contrast, are likely to be especially useful for the pursuit of explanations because they allow the learner to infer causal relations [79,80] and inquire about unobservable entities [81] (Figure 1).

Causal Intervention

Effective causal intervention in pursuit of explanations relies on the ability to perform informative experiments: typically, interventions that isolate a single causal variable and control confounds. Early research suggested that children’s ability to design informative experiments is limited until adolescence [82], but recent research has demonstrated that preschool-aged children choose interventions that disambiguate causal structure [83], use conjectured explanations to inform their later exploration [84], and selectively deploy different exploratory actions based on their relative informativeness for the task [85]. Older children selectively deviate from controlled experiments in contexts where testing multiple variables at once is more efficient [86]. In more complex tasks, however, 3- to 6-year-olds fail to spontaneously create disambiguating interventions after receiving evidence that disconfirms their expectations [87]. Instead, they use intervention strategies like the “positive test strategy,” which privileges positive evidence consistent with a single target hypothesis [87–89]. However, some have argued that a positive test strategy could be quite useful in some contexts [90] or given particular learning goals [91].
Question Asking

Causal intervention is not appropriate in all circumstances; unobservable entities (e.g., germs) and inaccessible entities (e.g., the moon) cannot be readily manipulated, and thus question asking may be the only way for children to learn about explanations involving these entities. Indeed, by the age of six, children ask fact-seeking questions about unobservable entities but directly explore observable entities [92].

Children begin asking questions before the age of two, and the proportion of questions that are explanation-seeking increases with development, peaking around age three [93]. While children begin to direct questions to appropriate sources in preschool [20,52,94], children’s ability to ask maximally informative questions to solve a specified problem continues to develop during the preschool years and beyond. In one set of studies [95], 3- to 5-year-old children were asked to identify the most informative question to discover the explanation for an event. With increasing proficiency with age, children preferred questions that targeted an individual explanation when that explanation was more likely than others, but chose questions that eliminated several candidate explanations when all were equally likely. Other studies using similar methods have also shown age-related improvements in question-asking efficiency [96–98, but see 99], and that question efficiency can be improved with certain structural supports [96].

To summarize, children use both causal intervention and question asking to seek explanations, with both strategies improving in efficiency over the preschool and early elementary school years, and with the former continuing to develop through adolescence. Additional research will be required to link these exploratory behaviors to the drive states that motivate them over development, and to identify whether and when these behaviors are triggered.
by first-person, third-person, or future-oriented cues. For example, in tasks that involve seeking rewards, there are age-related changes in the extent to which exploration is random (the result of decision noise) or systematic (directed towards uncertainty) [54,100], and in tasks that involve learning about categories, children direct their exploration differently from adults [101]. Future research is needed to determine how and why exploration that is motivated by curiosity and directed at acquiring explanations changes (in quantity or in nature) across development.

Conclusions

Combining the motivational drive of curiosity with the epistemic power of explanations, explanation-seeking curiosity is likely to be an important driver of children’s learning, especially when it comes to the unobservable and causal structure of the world captured by intuitive theories. We reviewed evidence that very young children are selective in their ESC and preferentially seek explanations when cued by first-person cues, third-person cues, and future-oriented cues. Children’s ability to seek explanations also develops, with causal intervention and question asking playing critical roles.

While much of our analysis is based on studies of actual learners, many of the papers we review argue that fully rational learners should explore when a relevant cue is present, or that exploration should be pursued in a particular way to resolve uncertainty, typically using Bayesian approaches. Bayesian models have provided a powerful method for understanding active learning in development, but additional questions arise when combining these individual analyses into a single model: How should a rational learner weigh competing cues to curiosity against each other? How should a rational learner choose between question asking, causal intervention, and other available behaviors? And how do actual learners navigate these problems? Answering these questions will require building more complex models, designing
more sophisticated experiments, and better characterizing children’s exploration in real-world environments [78,94,102–107]. Ultimately, however, these efforts will improve our understanding of learning throughout the lifespan.

Future research may also provide insight into whether and how we should expect ESC to diverge from other forms of curiosity. Explanation search often involves consultation with and deference to experts [108,109], suggesting third-person cues may be especially powerful in triggering ESC. Additionally, the future-oriented cues that trigger ESC may focus on unique criteria—for example, how likely it is that the received information will constitute a “good” explanation [31]. Finally, satisfaction methods may differ: pointing is unlikely to elicit explanatory information, while causal intervention is unlikely to elicit non-explanatory information.

Lastly, research on decision making under risk [110] and on how costs are weighed against the benefits of information gain [53–55,111] will shed light on when we can expect children to pursue their curiosity. With adults, it has been proposed that information is itself rewarding, and that curiosity motivates learners to obtain this reward [112–114]. In settings where children are more exploratory than adults [53–55], do children find information more rewarding than adults, or are the costs associated with exploration less steep for young learners? If explanatory information is indeed especially powerful for learning, do learners find the satisfaction of ESC especially rewarding, and correspondingly experience stronger curiosity towards explanatory targets?

Despite these open questions, recent research has dramatically deepened our understanding of children’s ESC. Through question asking and exploration, children actively pursue information that helps them make sense of the world, and they do so with increasing
proficiency over the course of development. Motivated by explanation-seeking curiosity, children come to know not just *what* events and phenomena they can expect to encounter, but *why* such events and phenomena occur—providing a powerful means for prediction, intervention, and understanding.

Declarations of interest: none

Acknowledgements

We would like to thank Corey Cusimano for helpful comments on an earlier draft. This work was supported by a grant provided by the Templeton Foundation to TL and an NSF Graduate Research Fellowship to EL [grant number DGE-1656466]. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Templeton Foundation or the National Science Foundation.
References

Comprehensively reviews the research on question initiation, formulation, expression, and response evaluation between infancy and elementary school. Discusses potential sources of individual differences.

31. Liquin EG, Lombrozo T: A functional approach to explanation-seeking curiosity. *Cogn Psychol* 2020, **119:101276.**

Characterizes explanation-seeking curiosity in adults. Finds that explanation-seeking curiosity is potentially distinct from fact-seeking curiosity, is associated with subsequent information-seeking behavior, and is related to potential triggers capturing fit with prior knowledge, expectations about future learning, and expectations about future export.

42. Sim ZL, Xu F: **Another look at looking time: Surprise as rational statistical inference.** Top Cogn Sci 2019, **11**:154–163.

44. Loewenstein G: **The psychology of curiosity: A review and reinterpretation.** Psychol Bull 1994, **116**:75–98.

46. Wu Y, Gweon H: **Surprisingly unsurprising! Infants’ looking time at probable vs. improbable events is modulated by others’ expressions of surprise.** PsyArXiv preprint 10.31234/osf.io/8whuv; 2019.

47. Wu Y, Gweon H: **Preschoolers jointly consider others’ expression of surprise and common ground to decide when to explore.** PsyArXiv preprint 10.31234/osf.io/ckh6j; 2019.

*49. Yu Y, Landrum AR, Bonawitz E, Shafto P: **Questioning supports effective transmission of knowledge and increased exploratory learning in pre-kindergarten children.** Dev Sci 2018, **21**:e12696.

Introduces “pedagogical questioning” as a tool for teaching children target information without decreasing their exploration of non-target information, in contrast to direct instruction. Provides a tool for introducing information without hampering curiosity.

51. Ronfard S, Chen EE, Harris PL: **The emergence of the empirical stance: Children’s testing of counterintuitive claims.** Dev Psychol 2018, **54**:482–493.

54. Schulz E, Wu CM, Ruggeri A, Meder B: **Searching for rewards like a child means less generalization and more directed exploration.** Psychol Sci 2019, **30**:1561–1572.

Finds that 4- to 5-year-olds pursue post-decision information about alternative courses of action, preferentially after negative outcomes and for alternatives they could have pursued. Suggests that children’s curiosity is selective to particular types of stimuli and potentially geared towards understanding undesirable outcomes that could be prevented in the future.

Finds that children prefer explanations at higher levels of generality in biology by age 5 (e.g., explaining a property of an individual bear by appealing to a property of all animals, rather than a property of all bears or that individual bear), but in physics by age 11. Suggests that ESC may be satisfied by different explanations across development.

Investigates whether children evaluate explanations by whether they are relevant to an explanatory goal, rather than merely by their truth. Children as young as 4 can select a relevant explanation as more helpful than an irrelevant but true explanation; however, the ability to identify relevant explanations in isolation improves across childhood. Suggests that the criteria for satisfying ESC may change across development.

70. Frazier BN, Gelman SA, Wellman HM: **Preschoolers’ search for explanatory information within adult-child conversation.** *Child Dev* 2009, **80**:1592–1611.

71. Kurkul KE, Corriveau KH: **Question, explanation, follow-up: A mechanism for learning from others?** *Child Dev* 2018, **89**:280–294.

72. Ünlütabak B, Nicolopoulou A, Aksu-Koç A: **Questions asked by Turkish preschoolers from middle-SES and low-SES families.** *Cogn Dev* 2019, **52**:100802.

73. Woolley JD, Cornelius CA: **Wondering how: Children’s and adults’ explanations for mundane, improbable, and extraordinary events.** *Psychon Bull Rev* 2017, **24**:1586–1596.

74. Mills CM, Sands KR, Rowles SP, Campbell IL: “I want to know more!”: Children are sensitive to explanation quality when exploring new information. *Cogn Sci* 2019, **43**:e12706.

Finds that lower subjective ratings of explanation quality predict greater subsequent information search between the ages of 7 and 10 years. Supports a deprivation theory of curiosity, where learners experience curiosity when they judge that they lack information.

Reports that children trained on a novel exploratory action (shaking a box to determine its contents) preferentially deploy this action when it is needed to reduce uncertainty. Suggests early-developing competencies underlying the design of effective causal intervention.

Manipulated whether parents were directed to encourage exploration, encourage explanation, or behave as normal in a gear exhibit in a children’s museum. Children of parents who were prompted to encourage exploration spent more time connecting gears, while children of parents who were prompted to encourage explanation spent more time spinning gears and discussing gear mechanisms.

