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Abstract 

Mental simulation -- such as imagining tilting a glass to figure out the angle at which water would 

spill-- can be a way of coming to know the answer to an internally or externally posed query. Is 

this form of learning a species of inference or a form of observation? We argue that it is neither: 

learning through simulation is a genuinely distinct form of learning.  On our account, simulation 

can support learning the answer to a query even when the basis for that answer is opaque to the 

learner. Moreover, through repeated simulation, the learner can reduce this opacity, supporting 

self-training and the acquisition of more accurate models of the world. Simulation is thus an 

essential part of the story of how creatures like us become effective learners and knowers 

Introduction 

Imagine that you have two cylindrical glasses of the same height, where one is wide and one is 

thin. Each glass is filled with water to the same height. If you slowly tip both glasses over at the 

same rate, which glass will spill water first? Or, will they both spill water when tipped to the very 

same angle? 

This challenge – known as the “water-pouring problem” (Schwartz & Black, 1999) – is often 

answered incorrectly. But if people are invited to imagine holding out their hands (as if holding 

both glasses), to close their eyes, and to mentally rotate their hands until they think the water would 

spill, they often produce the correct response: that water from the wide glass will spill first. Call 

this activity of answering a query by imagining and then evaluating the output of one’s imagination 

mental simulation.  
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The exercise of simulation just described looks like a way of learning something new. Construed 

in this way, it is a lot like learning through observation. But it’s also natural to say that this kind 

of learning doesn’t rely on acquiring any new information. Described like this, it is a lot like 

learning through inference. 

How does learning through simulation support learning? And what, if anything, is epistemically 

distinctive about learning through simulation? Can learning through simulation be reduced to 

learning through observation or through inference?  

This paper aims to make progress on these questions. We argue that mental simulation cannot be 

reduced to observation or inference, though it shares important similarities with both. On our 

account, mental simulation is distinctive in two ways. First, simulation is a method that can support 

learning some proposition q (the output of the simulation) even when the basis for that output is 

opaque to the learner. Second, through repeated simulation, the learner can reduce this opacity, 

supporting the acquisition of more accurate models of the world. This allows us to see why (and 

under what conditions) simulation is an essential part of learning from what we already know.  

Our account is partially motivated by new developments in machine learning and artificial 

intelligence that make the topic of simulation timely. Some of today’s most successful artificial 

agents (most famously the deep learning architecture AlphaGo, Silver et al., 2016) learn through 

simulation, training themselves over and over on simulated outcomes. Within reinforcement 

learning, comparing model-based and model-free systems has opened an avenue of research into 

the power and limits of an internal model (e.g., Atkeson & Santamaria, 1997; Hamrick, 2019). 

And even the most basic unsupervised clustering methods have challenged our assumptions about 

how much can be learned through a process which, like many simulations, is opaque to the person 

relying on it, and devoid of explicit knowledge. 

These examples complement more familiar examples of mental simulation that have been the 

subject of prolonged interest and debate in both psychology and philosophy, with important work 

on the role of imagination (e.g., Kind & Kung (Ed.), 2016) and thought experiments (e.g., Brown 

& Fehige, 2017). As we use the term, however, simulation is a more expansive category than 

thought experiments: it includes cases of repeated (“long-run”) simulation, as in fine-tuning 

athletic skills through motor imagery, as well as artificial simulations. Theorizing about this larger 

category brings into focus features of learning through simulation that have been under-

emphasized in past work on the epistemic role of simulation in the mind and in science, in 

particular the long-run use of simulation and the connections between one-shot and long-run 

simulation.1  

Of course, drawing such a wide net also has disadvantages. Why think this heterogenous category 

will have anything interesting in common? One reason to suspect there is an epistemic feature 

shared by most simulations is the similarity of the philosophical debates surrounding their use. 

                                                
1 A side-effect of this wider focus is that our account does not differentiate between simulations 

that are conscious or unconscious, internal or external, or propositional or non-propositional. 

While these are interesting differences, we aim to establish a similarity in the epistemic function 

of the process across these dichotomies. 



Shannon Spaulding (2016) argues that mindreading2 (simulating the thoughts of others) cannot be 

a way to learn new things about the world, but is a way of generating ideas to assist other cognitive 

faculties that are capable of producing knowledge through inference (or observation). Tamar 

Gendler (2004) advances the view that thought experiments are often “quasi-observational,” such 

that accompanying visual imagery plays a critical epistemic role. Discussing computer simulation 

in physics, Eran Tal (2009) asserts that simulation can confirm hypotheses, but not by inferring 

from data to theory - instead, the simulations he discusses offer a way of inferring from theory to 

data. In each case, we see a remarkably similar dialectic, attempting to fit simulation into some 

epistemic role relative to inference and observation.  

A second reason to draw a wide net in efforts to capture the epistemic role of simulation comes 

from the success of related projects: philosophers already take inference and observation to be 

categories that cover both individual cognitive exercises and public scientific acts – and so it seems 

apt to ask a similar question about simulation at the same level of generality. However, in order to 

keep our argument focused, we will build a theory of mental simulation around evidence from a 

single domain, motor simulation, and then argue that the account generalizes to scientific and 

artificial contexts. 

By making progress in understanding the function of simulation, we’ll also shed light on the 

function of the capacity to simulate. Why would this capacity be useful in the first place? 

Simulation is a fairly common mental activity, at least in humans, and yet it’s not obvious that if 

a designer were to create a learning machine to solve the kinds of problems we solve, she would 

give the machine the capacity to simulate. Our account sheds light on why we are the kinds of 

learners that benefit from simulation.  

We start in Section 1 with a case from machine learning that presents a functional role for 

simulation – self-training – that a successful account should capture. In Section 2, we’ll clarify our 

assumptions and terminology concerning simulation, observation, and inference as ways of 

acquiring knowledge. Sections 3 and 4 explore ways in which simulation might be related to 

observation and inference. We conclude that while simulation has something in common with each, 

it cannot be reduced to a version of either. Sections 5-7 present our positive account: we explain 

what simulation lacks (Section 5), what it offers (Section 6), and how it works (Section 7), 

introducing the important idea of representational extraction. We conclude in Section 8 by 

discussing the ramifications of our proposal.  

1. An Epistemic Function of Simulation: Self-training 

In this section, we’ll run through one example of a machine learning process that trains its own 

internal model through a kind of simulation. This case is not meant to be particularly unique, but 

rather an exemplar of a general feature that helps explain the success of this class of learning 

methods – and raises questions about how humans and other animals might build and use internal 

                                                
2 A long and complex debate exists over whether theory of mind (or mindreading) is a simulation, 

an inference, or involves both. We’ll avoid taking a position in this debate, and we don’t intend 

the discussion of inference here to necessarily track the sense of inference invoked in the “theory-

theory” (e.g., Sellars, 1956).  



models. 

Our example is a model-based reinforcement learning method called “Hallucinated Replay” 

(Talvitie, 2014). In contrast to more standard reinforcement learning algorithms (such as Q-

learning; Sutton & Barto, 1998), Hallucinated Replay uses two kinds of feedback to learn. The 

first kind of feedback is ordinary, external feedback: the model is updated when actual 

observations fail to conform to predictions. The second kind of feedback involves “hallucinated” 

rather than actual observations: if a predicted state (e.g., that was expected to lead to some reward) 

is not observed, the model will update expectations with respect to the predicted state as well as 

the actual state, even though the former was not actually observed.3 Interestingly, the predicted 

(“hallucinated”) states need not be possible states of the environment, so they would never be 

observed and subsequently updated using more standard forms of training. The hallucinated 

training, on the other hand, essentially trains the model to get back on track from these fictional 

states. This algorithm is thus training itself to predict well, even when it predicts based on incorrect 

imagined “feedback.”  

Hallucinated Replay is not globally superior to other model-based reinforcement learning 

algorithms. However, it has been shown empirically and analytically to succeed in contexts where 

comparable methods, trained on the same data (but without “hallucination”), tend to struggle 

(Talvitie, 2017, 2018). In particular, the model does better in environments that require agents to 

correct their model structure rather than merely tune parameters. Hallucinated Replay seems to 

help with this process because the model trains itself to self-correct from a wide range of inaccurate 

states, including those that would never be produced by the actual environment.  

This example reflects a ubiquitous feature of machine learning algorithms: to succeed, they must 

be able to train themselves, and this training cannot depend on a representation of the reward 

structure of the environment that is already accurate.4 In developing our own account of learning 

through simulation, we draw a key lesson: that simulation is an exercise performed using an 

internal model that also trains and alters that model. We refer to this feature as self-training, and 

a motivating consideration for our account of learning through simulation is that it accommodate 

this form of learning alongside more familiar cases of learning from isolated episodes of simulation, 

such as the water-pouring problem and most scientific thought experiments.  

2. Clarifications 

Before moving on to consider learning through observation and through inference, it’s worth 

                                                
3 As a quick illustration, imagine the agent starts in state S0, and predicts initially that act A1 in S0 

will bring about S1, and then act A2 in S1 will bring about Sr, a rewarding state. However, the agent 

is wrong: act A1 in S0 brings about S1*, and act A2 in S1* brings about Sr*. A standard update would 

train the model at S0 against the actual observed transition to S1*, generate a prediction for the acts 

available at S1*, and then evaluate that prediction against the next observation. In this way, only 

predictions from actual states get updated. Hallucinated Replay adds a second update, where taking 

A1 in the “hallucinated” state S1 is corrected as if it should have resulted in Sr* rather than the 

predicted Sr. 
4 See Hamrick (2019) for a review of simulation in reinforcement learning algorithms.  



introducing some clarifications of our aims and terminology. 

First, note that our aim is to put forward a new theory of an epistemic function of simulation, not 

to identify the only function of simulation. A further qualification is that while capturing this 

distinctive function of simulation will bring into focus differences between simulation and 

paradigmatic cases of observation and inference, there are other ways of inferring and observing 

that are more similar to, and perhaps intertwined with, simulation. Our reason for focusing on 

paradigmatic cases of observation and inference is that we have a good grasp on how such cases 

generate knowledge (even if the details are controversial). Assimilating simulation to observation 

or inference is thus attractive as a solution to the puzzle of how simulation can be a way to generate 

knowledge. Rather than drawing a bright line between simulation on the one hand, and observation 

and inference on the other, however, we instead hope that our final account will illuminate 

important similarities, and provide a foundation for future work that takes seriously the elements 

of simulation and imagination that are embedded in perception, induction, prediction, and other 

ways of observing or inferring.  

We will compare three kinds of learning processes, defined as ways of coming to know the answer 

to an internally or externally posed query. These processes are learning through simulation, 

learning through observation, and learning through inference. We’ll describe each process in terms 

of its inputs and output. The former could include inputs from the external world, from the 

thinker’s internal representations, or some combination thereof. These inputs are utilized by some 

kind of cognitive process to yield the output: a piece of knowledge, knowledge that q, which we 

denote K(q). Note that the sense of learning we are invoking here is factive: learning that q entails 

that q. We also assume that knowledge requires more than true belief, but the way that this 

additional commitment is spelled out will not matter for our story.5 

To illustrate these processes in action, consider again the water-pouring problem. We assume that 

holding out your hands to simulate pouring, or creating a vivid mental image of so doing, constitute 

simulation. However, you could have solved this problem a different way: by finding two glasses 

fitting the description, filling them with water to the same level, and then rotating them to see 

which spills first. In this case, you did not simulate to arrive at an answer, but instead set up an 

experiment and then learned the result through observation.   

Likewise, when presented with the water-pouring problem, you might have solved the problem 

using static images, like those in Figure 1, and an argument along the following lines. 

                                                
5 We’ll discuss learning in terms of coming to know a proposition, but it’s worth noting that on 

many accounts, there are separate and non-reducible ways of coming to know a skill or coming to 

know an object (in the sense of acquaintance). We suspect our arguments hold equally well for 

these other kinds of knowledge, but fleshing out how this would work is outside the scope of the 

present paper.  



 

Figure 1. A representation of the water-pouring problem. 

Say that the wide glass is just as tall as it is wide, and both glasses are filled up to exactly halfway. 

In that case, the liquid will spill out of the wide glass as soon as it is turned past a 45-degree angle, 

since the diagonal line from the top left to the bottom right of the glass divides it by volume into 

two equal halves, just like the original horizontal line. On the other hand, the thin glass, when 

divided by the same diagonal line, will have to be tipped much farther to keep the diagonal line 

parallel to the horizontal. This explanation shows the same result as the motor simulation, and even 

uses a visual device in the form of a figure, but intuitively it is not a simulation. As just described, 

this process of figuring out the answer is instead a kind of learning through inference.  

With these paradigmatic cases of simulation, observations, and inference as reference points, we 

can move on to our arguments. 

3. Simulation as Learning through Observation 

One way to make sense of learning through simulation is to assimilate it to learning through 

observation. In this section, we first develop this picture, and then argue that it is inadequate.  

We can start with a rough definition of learning through observation as a transition from the 

representation of some external piece of new evidence e to a conclusion q. S's learning q from 

evidence e realizes a relation of external evidential support, such that e renders q true or likely to 

be true. In the terminology introduced in the previous section, this means that the input to learning 

includes new evidence, and that the cognitive process realizes the relation of external evidential 

support. This external evidential support relation is necessary to explain why being exposed to an 

apple, but forming a subjectively justified internal representation as of an orange, does not count 

as an observation. Whatever else one might require of learning from observation, it should be 

relatively uncontroversial that what it means to observe requires that the target of observation stand 

in some sort of external evidential relation to the internal representation it produces.  

Simulation has at least a superficial similarity to observation. In our examples, the thinker sets up 

some conditions and then “observes” the outcome of her simulation. Pursuing this parallel, we can 

see both observation and simulation as answering the same query (e.g., “which cup will spill 

first?”), and as doing so in much the same way: through a transition from some (actual or simulated) 

observation e to some conclusion q. 



In fact, some form of equivalence between actual and simulated observations is advocated or 

presupposed in empirical research on learning from simulated experience. As one example, 

Kappes and Morewedge (2016) argue that simulated experience can sometimes “substitute” for 

the corresponding real experience, because “mentally simulating an experience induces equivalent 

downstream psychological and behavioral effects as actually having the corresponding experience” 

(pp. 406-407).  They review evidence from a range of cases, including the mental simulation of 

hypothetical observations, sequential procedures, or desired outcomes. 

Another example comes from the literature on motor imagery, where the dominant paradigm is 

what is called the “functional equivalence” model, originally expressed as the idea that  “imagery 

of movements has some functional effects on motor behaviour that are in some way equivalent to 

actual movements” (Johnson 1982, pp. 363). Jeannerod suggests that “it seems a logical 

consequence of this rehearsal of the corresponding brain structures, and specifically the motor 

structures, that the subsequent execution will be facilitated” (pp. 108). Of course, advocates of 

functional equivalence do not consider actual motor experience and motor simulation completely 

equivalent: for instance, motor training might help stretch out muscles, but surely motor simulation 

does not have that function. Rather, this equivalence is restricted to a subset of the functions of 

each activity, where this subset is taken to explain how motor simulation supports learning. 

In contrast to this thesis, we’ll argue that assimilating the functional role of simulation to that of 

observation misses one of the most important ways in which simulation supports learning. Like 

the two forms of feedback in Hallucinated Replay, actual and simulated observations play different 

functional roles when it comes to self-training, and understanding the role of simulation in self-

training is crucial for understanding (e.g.) how motor simulation supports learning.  

To see why observation and simulation come apart when it comes to their functional roles, it’s 

useful to consider two time-points at which we might engage in simulation: at the beginning of 

learning (when the simulation mechanism is not yet trained), or at the end of learning (when the 

simulation mechanism is fully trained). Of course, real cases will almost always fall within these 

time-points; for our purposes, these idealized points are merely relative benchmarks. 

To illustrate, consider a simulation of a golf swing and an actual exercise of a golf swing, which 

both have as their output a state with the content that the ball misses the target by a few inches to 

the right. A functional equivalence theorist might be tempted to say that each of these processes 

yields an “observation,” and that these observations serve the same function. And in some sense 

this is right: both events could have the same immediate impact on the motor system, and both 

serve the function of allowing the  simulator to generate a response to the question of where the 

ball will go. Yet the simulated swing in fact generates something distinct from actual observation: 

it generates (likely noisy) information about where the ball would go on the  simulator’s current 

motor model.6 This point becomes important when we consider the beginning of learning – before 

                                                
6 In fact, even in the one shot case we can observe what look like systematic differences between 

an imagined motion and an actual motor execution; Walsh and Rosenbaum (2009) find that 

imagined motions and actual motions conform to different aims: for instance, in imagining a line 

connecting to an ellipse we tend to prefer connecting the line to the apex, whereas when drawing, 

we tend to prefer a shorter path. 



the model is fully trained. 

Consider a case where your motor model is biased to the left: you tend to predict that balls you hit 

will land farther to the left than they actually do, were you to replicate the imagined swing in 

practice. In this case, the actual swing gives you a baseline against which to judge your simulated 

swing: when they have different results, especially in this systematic way, you should start to ask 

yourself where this difference is coming from and conclude that you are not taking into account 

some critical factor in your imagination. The combined use of the motor exercise and motor 

simulation allows you to solve a problem: you can now adjust the motor model for better prediction 

in the future. But the reason why the two swings can work together in this case is that each serves 

a different function – neither two motor exercises nor two motor simulations could enable you to 

correct your model in the way described above. Actual swings are the most direct way to learn 

what’s off about your simulation, and simulated swings are the most direct way to learn what your 

current knowledge base and motor model predict.  

Thus, focusing on the beginning of learning illustrates why the functional equivalence claim breaks 

down. If the two processes were truly equivalent for training, then at a process level, observation 

and simulation would “calibrate” or self-train the model in just the same way. But the lesson from 

such cases is more general: even for highly trained experts, relying on the model and relying on 

feedback from the environment to learn a single output may have different costs and be reliable 

under different conditions, insofar as even perfect experts will still need to calibrate and tune when 

they face changes in their environments or in their own capacities. Indeed, people’s use of 

simulation is sensitive to these functional differences (for one example, see Dasgupta et al., 2018).   

Before moving on, consider another way of assimilating learning through simulating to learning 

through observation: the position that simulation is a kind of learning through observation, but one 

that answers a different query and has a distinct target of observation. Whereas learning through 

observation answers queries about the external world, learning through simulation answers 

questions about our internal models. Correspondingly, the target of the former is the external 

world, while the target of the latter is ourselves. 7  On its own, this move is insufficient to 

accomplish our original goal: to explain how mental simulation can be used to learn about the 

world. In the water-pouring problem, the query answered through simulation was which glass 

would in fact spill first, not something about a mental model. But the view that simulation answers 

queries about our mental models could be supplemented to include an additional step: something 

like an inference connecting the internal observation to a proposition about the external world. For 

instance, in the water-pouring case, one would first observe that one’s motor model “expects” the 

wider glass to spill first, and then infer based on the reliability of this model that the wider glass 

                                                
7 Magdalena Balcerak Jackson offers a version of a view on which simulation offers observations 

of the internal world, as opposed to the external world. On her account, the similarity in structure 

between imagining and perception explains why imaginings can give us phenomenal evidence 

(evidence about how things look). Observation (or in her terms, perception) has the role of 

providing phenomenal evidence as well as what she calls physical evidence (evidence about the 

way things are). Of these two roles, simulation can play the former, but not the latter.  Other views 

similarly suggest that imagination can be a similar process to perception, but directed towards 

different subject matters. For example, Williamson (2016) takes the line that imagination gives us 

access to modal facts. 



would in actuality spill first. In other words, learning through simulation could be reduced to a 

form of learning through observation (of one’s internal model) followed by an instance of learning 

through inference (in which this internal observation figures in an inference about the external 

world). 

We think this approach is problematic for several reasons. First, recall that we characterized 

learning through observation as a transition involving a relationship of external evidential support. 

This relationship would need to be modified to account for how one part of the mind could stand 

in the right (external?) relationship to another for this relationship (or a close analog) to obtain. 

The idea that one part of the mind performs a simulation, while another observes it, is 

uncomfortably homunculur, but perhaps not fatal. Our second worry involves the subsequent 

inferential step. An inference from an internal model to the external world would require (perhaps 

implicit) knowledge of what justifies the model’s output. While some commitment concerning the 

relationship between the model and the world may often ground uses of simulation in science (see, 

e.g., Weisberg, 2012 on the role of models in science), it seems too demanding to require this of 

most mental simulation. As we elaborate below, it is characteristic of learning through simulation 

that we lack access to such commitments.  

A final worry about this strategy is that it breaks up what looks like a single process into a series 

of fully distinct and epistemically independent steps. Doing so leaves us with the problem of 

explaining why these steps would be taken in sequence, and what relates them to each other. In 

sum, the strategy of reducing simulation to an internal observation followed by an inference seems 

to stretch our understanding of both observation and inference, and to miss what’s epistemically 

distinctive about learning through simulation. 

4. Simulation as Learning through Inference 

An alternative way to approach simulation is to treat it as a form of learning through inference. By 

inference, we’ll cast a wide net to include deductive and inductive reasoning, as well as abductive 

inference.8  Crucially, inference here picks out a cognitive act rather than a relation between 

propositions, following Harman’s (1986) distinction between inference and implication. As with 

the reduction to observation, this reduction would explain how simulation can result in learning 

by appealing to learning mechanisms that are better understood.  

The project of reducing simulation to inference has several appealing features. First, like inference, 

simulation seems to rely on no external input; inference is the canonical form of learning from 

what you already know. A second promising element is that inference has a well-defined formal 

structure. Intuitively, what is distinctive about inference is that it involves the sort of process we 

can write down in the form of premises and a conclusion. If there were a parallel structure of 

premises and conclusion hidden in cases of simulation, this would be tremendously explanatory of 

the conditions for success and failure when it comes to learning through simulation.9  

                                                
8 On some views, abduction includes induction, and on others the reverse may be true.  
9 Norton (1991) argues along similar lines that thought experiments have a hidden argumentative 

structure, and so count as arguments for epistemic purposes. Gendler (1998) rejects the latter, 

instead holding that the supposed hidden argumentative structure does not capture the epistemic 



Let’s start with a definition of inference. While this is of course the subject of much dispute, most 

definitions share two linked components: (i) a requirement about the causal relationship between 

the thinker entertaining the premises and her entertaining the conclusion, and (ii) a requirement 

about awareness (or some weaker kind of reasons-responsiveness) that explains how the thinker 

could be described as endorsing the connection between premises and conclusions. Paul 

Boghossian’s definition of inference illustrates both components: 

A transition from some beliefs to a conclusion counts as inference only if the thinker takes 

his conclusion to be supported by the presumed truth of those other beliefs.......S’s inferring 

from p to q is for S to judge q because S takes the (presumed) truth of p to  provide 

support for q. (Boghossian, 2014) 

We’re also interested in cases with more than one premise, and so we’ll expand the definition to 

allow for a set of premises p1….pn that jointly support the conclusion.  

This notion of inference (as Boghossian himself notes) is too restrictive if we assume that the 

relevant sense of “taking the truth of p to provide support for q” requires explicit endorsement of 

a proposition about warrant. In an everyday context, the thinker usually tracks the support relation 

in a less explicit way. For instance, she might be said to implicitly infer on some basis when her 

use of inference is counterfactually responsive to that basis. That is, if her evidence had suggested 

that the basis did not hold, she would not have been disposed to make the inference (or, in other 

cases, if her evidence had implied that the basis holds, she would still have been disposed to make 

the inference).   

Could a rat, on this implicit theory, count as inferring the location of a food source from an 

inductive generalization about past food locations? Since our aim is to pick out differences 

between simulation and inference across many kinds of thinkers, we’ll adopt a permissive notion 

of inference that includes (non-human) animal thought. However, this definition will not capture 

everything that is sometimes called inference. Critically, we require the thinker to in some sense 

be in touch with the relationship between premises and conclusion, satisfying a weak form of 

condition (ii). 

Suppose our rat’s judgment that the food is on the left is caused by past experience of food being 

on the left when a particular odor is presented at the start of the maze. In a case of inference, he 

represents these experiences, and these representations cause his subsequent judgment (satisfying 

condition i). However, we require something more. While our rat can neither report the basis of 

his judgment nor his endorsement of some support relation between this basis and a conclusion, 

he can act as if the implicit form of condition (ii) holds: for instance, he might put two kinds of 

similar experience together to infer a generalization, such as “odors are only correlated with food 

position when they are presented at a particular time.”  

What would it mean to act as if he wasn’t making a genuine inference? In this case, he might 

persist in turning to the left even when the context shifts, or fail to learn (or be responsive to) 

generalizations about his environment. Generalization and other forms of meta-learning are an 

                                                

function of a thought experiment. See also Lombrozo (forthcoming) for further discussion of the 

limitations of reduction.  



indication of inference because in order for this “learning to learn” (Harlow, 1949; Behrens et al. 

2018) to occur, the rodent needs to do more than just be caused to go left based on some facts. 

What he needs is a sensitivity to the basing relation itself, which is to say he needs to infer.10  This 

point is not merely theoretical; as one example, Tibbetts et al. (2019) present evidence that wasps 

make transitive inferences – i.e., they put past regularities together to learn a new one, which is 

exactly the kind of behavior that indicates true inference. 

By defining inference in this way, we have a notion that’s weak enough to capture implicit cases, 

but strong enough to identify why inference is a distinctive way of coming to know. Awareness of 

some particular propositions as the basis of one’s belief (even if only in our very weak sense) 

explains why inference works: it’s the kind of transition that builds on past knowledge in an 

accessible (and hence generalizable) way. We scrutinize inferential transitions, feel uneasy about 

those that proceed from a shaky basis, and evaluate how they fit together. Inference, unlike 

observation, makes salient a particular set of background beliefs (i.e., the basis) and their 

connection to the newly learned proposition. 

Now, consider the difference between the original simulation of the two glasses in the water-

pouring problem and the more explicit reasoning provided in Figure 1. The argument associated 

with the figure could be re-written as a set of numbered premises, and it seems natural that the 

person who uses this reasoning to discover the conclusion judges that the wide glass will spill first 

because she takes the truth of these premises to provide support for that conclusion.  

On the other hand, something is missing in the simulation case. A thinker who uses simulation to 

answer the question is likely to find herself in the following position: she knows that her motor 

system in some sense “thinks” that the wide glass will spill first under the simulated conditions. 

However, she is unable to identify, recognize, or in any way point to what it is about these 

conditions, or indeed about her cognitive system, that generates the conclusion. She reached the 

conclusion because of something represented in her perceptual or motor system, and this causal 

relationship meets the first requirement (i) for inference. However, she cannot judge that the 

connection between premises and conclusion was one of support, because she is not in a position 

to identify the premises. She therefore fails to meet the second requirement (ii) for inference.   

The issue here is not that the motor system is a holistic set of connected premises that support the 

conclusion - if so, this argument would also suggest that any kind of holistic inference is not real 

inference. Instead, the issue is that there are particular things about the inputs and cognitive 

processes behind this reasoning that support the conclusion, and lots of things about the inputs and 

cognitive processes that have nothing to do with the conclusion. But our simulator is unable to tell 

the difference, and thus to recognize or internally evaluate the relationship of support. To make 

this point even more obvious, consider that it might even be unclear to the simulator whether the 

answer came from her motor system, pure visual imagination, some form of spatial reasoning, or 

                                                
10 Siegel (2019) adopts an even weaker view of inference, on which it’s the force of the conclusion 

that individuates inference from association or what she calls “mental jogging.” We don’t wish to 

rule out her theory as capturing the nature of inference as a cognitive kind. However, as we’ve 

defined it, inference is distinct from other kinds of learning, such as observation. On Siegel’s view, 

perception itself is a form of inference, and so no such separation is possible. And so for the 

purposes of a taxonomy of coming-to-know, a more restrictive view of inference is required.   



a combination of the above.11 The critical point is that even if we assume that our thinker did not 

know whether her simulated output was coming from the visual system or required motor 

imagination, this does not undermine the fact that she learned the answer through simulation.  

In fact, our simulator plausibly knows that she lacks the ability to identify the premises, and we 

can imagine that this bothers her. To rectify this, she might re-do the simulation, trying out what 

happens if the glasses are imagined to be very different in size, or if they are filled very high or 

very low. This re-simulation is a way to pull out the knowledge she lacks of what it is about the 

setup that matters to the output. 

Our simulator’s lack of knowledge might be seen as a flaw in simulation. And the inference-

reductionist might use this to argue that simulation is instead a defective kind of inference. But 

this response misses something interesting about the process of re-simulation. The example above 

actually shows more than just a lack of knowledge in the case of simulation that is present in the 

case of inference. The further element is that re-simulation can help address this lack of knowledge.  

This feature implies that simulation and inference have different roles. After all, if inference 

requires identification of the premises, it cannot serve as a way to uncover those same premises - 

which is just what re-simulation does in our toy example. In Section 5 we expand on this thought 

to present our positive view.   

5. What Simulation Lacks: Attribution and Warrant 

In the previous sections, simulation did not prove to be easily assimilated to observation or to 

inference. Simulation of an event in some domain, unlike observation of a similar event in the 

same domain, typically has a role in calibrating and making explicit our own background models. 

Learning through simulation did not meet our definition of learning through inference because a 

typical simulation works without the thinker understanding which of her beliefs led to the output.  

Drawing on these features, we’re now in a position to offer an account of what makes learning by 

simulation distinctive, and what this means for the epistemic function of simulation. In short, 

learning through simulation does not presuppose an answer to the following two questions: 

 Attribution Question: Which inputs or features of the process led to the output?12  

 Warrant Question: In virtue of what is the output justified? 

While uncertainty about the answers to these questions is characteristic of mental simulation, it 

                                                
11 As it happens, motor simulation provides a more reliable basis for reaching the correct answer  

to the water-pouring problem than pure visual/spatial simulation, but both lead to better 

performance than soliciting a verbal response without a prompt to engage in some form of 

simulation (Schwartz & Black, 1999). 
12 In some cases, uncertainty about the answer to the attribution question might concern how the 

output was generated rather than what went into generating it. For instance, you might be told that 

your simulation used exactly these three pieces of information, but if you lack an understanding 

of how those facts could lead to the output, this would not resolve your real uncertainty. However, 

at least in some paradigmatic examples, “what” uncertainty is more diagnostic than “how” 

uncertainty. 



may not be unique to simulation. However, we will argue that these forms of uncertainty partially 

differentiate learning through simulation from canonical cases of both observation and inference. 

Our paradigm cases of learning through inference, and indeed the definition of inference, require 

that the reasoner have at least partial answers to these questions. She must know (or believe, on a 

fallibilist conception), that premises P1...PN support her conclusion, and her knowledge of (or 

belief in) the conclusion must be based on this support. On a restrictive view of inference that 

requires explicit awareness of the relationship between the premises and the conclusion, inference 

presupposes attribution knowledge. And if this view requires explicit awareness of the inferential 

norms as governing norms, inference presupposes warrant knowledge.  

However, recall that our account of inference was less demanding when it comes to explicit 

knowledge; On our view, inference can be defined functionally or behaviorally. Yet even on this 

weaker view, inference requires not only being moved by some particular premises, but having a 

standing disposition to follow rules connecting the premises and conclusion. The fact that this 

disposition is to follow the rules rather than merely accord with them allows us to attribute implicit 

warrant knowledge, even to our maze-running rat.13 But we cannot do the same for our water-

pouring simulator. By re-simulating the output, only sporadically relying on simulation, or even 

expressing confusion about how her simulation worked, the simulator behaves (or is disposed to 

behave) as if she does not have attribution or warrant knowledge. In contrast, by flexibly applying 

inference across the requisite situations, responding to defeating conditions on a particular 

inferential rule, and so on, the person making an inference behaves (or is disposed to behave) as if 

she did have attribution and warrant knowledge. 

This “behaving as if” might seem like weak grounds to claim that she has or does not have 

knowledge of attribution and warrant, but the interlocutor who is pushing a thin, dispositional 

theory of inference should be more inclined to accept a correspondingly thin, dispositional 

ascription of knowledge.  

Of course, a thinker who learns something from inference may understand very little about the 

conclusion. For instance, a student who completes a logical proof successfully using a conditional 

proof may not understand that her conclusion could have been reached by using a proof by negation. 

                                                
13 In the non-human animal case, a rodent who simulates a path through a maze during sleep may 

repeat that simulation over and over again with small variations before she tries out the path in real 

life. The rodent who makes a kind of inductive inference may also try out many different paths 

before coming to a determinate plan of action. However, our second rat will try out different paths 

systematically, in ways that represent her application of extracted general principles: for instance, 

she might carry out a kind of tree-based planning that displays an implicit awareness of the 

structure of anticipated events. This is in contrast to a kind of simulation oriented toward 

uncovering that structure, which could by definition not be so systematic. Of course, it’s currently 

deeply controversial what repetitions of neural firings during sleep represent, if they represent 

anything at all. Our point here is that if replay during sleep is a kind of mental simulation, as 

Buzsaki et al. suggest, then we can distinguish the way the rodent treats these representations from 

the way the rodent would treat outputs of ‘inferential’ processes. And so even on the thin, 

dispositional notion of inference, simulation typically presupposes a further kind of uncertainty. 



But unlike the case of simulation, she understands that her conclusion follows from her proof, and 

why - even if she can say nothing more specific than “because it logically follows from these 

premises.”14  

A similar move can explain why the answers to these questions are available in typical cases of 

learning through observation. Here, we know that we are making observations of the world, and 

this knowledge is critical for normal observation. On some intellectualized theories of observation, 

observers always endorse a proposition about the reliability of their own observations, which will 

straightforwardly imply attribution, since classifying a learning experience as observation is 

making an attribution of the content to the environment, and will straightforwardly imply warrant, 

since reliability is a kind of warrant.   

But what about a less intellectualized theory of observation? Imagine that the correct 

epistemological view says that without any reflection, we have a strong default entitlement to rely 

on our perception, even absent any kind of demonstrable reason to do so (a position typically 

known as “perceptual dogmatism”). Even on this theory, we need to go along with our default 

entitlement to actually learn, so an observer who is uncertain about whether or not she is observing 

faces a problem. To learn through observation, she must go along with her perception and put aside 

the uncertainty. In asserting that the perceiver should go ahead and presume her perception comes 

from the external world even if she can’t provide evidence that it’s not actually an internally 

generated hallucination, she has attribution knowledge (or acts as though she does). In saying that 

the perceiver should presume her perception is reliable even if she can’t give any evidence about 

the reliability of her perceptual faculties, she has warrant knowledge (or acts as though she does). 

That is, even on theories of observation that require no reflection or internal justification, 

observation requires attribution and warrant knowledge -  it’s just that this form of knowledge is 

ascribed very liberally.  

6. What Simulation Offers: A Path to Self-Training 

We’ve argued that uncertainty regarding attribution and warrant are part of what makes learning 

through simulation distinctive. But it may seem as though this feature is simply an epistemic 

weakness. After all, answers to the two questions may be valuable in many contexts, and even 

critical for being fully justified in relying on simulation.  

On the contrary, we’ll argue that this weakness can sometimes be a strength. Learning through 

simulation does not presuppose certainty about attribution and warrant, and this has two 

epistemically interesting effects: in the short-term simulation can allow learners to benefit from 

mental processes that are largely opaque, and in the long run simulation is a critical part of learning 

about attribution and warrant, thereby rendering those very processes less opaque. This explains 

why simulation plays dual roles: a one-shot simulation can provide a particular answer, and 

simulation in the long-run provides understanding of our own internal models which enables 

                                                
14 To exclude these cases, the Attribution and Warrant Questions must be understood as applying 

to the particular token output of the learning process, not to the learning process more generally, 

or to the type output of the learning process. These other kinds of interpretative uncertainty are 

present in many of our cases, but are not distinctive to simulation. 



tuning and evaluation. We’ll start with the long-run case. 

Consider how, in the water-pouring case, a thinker might respond to her uncertainty about the 

scope and reliability of her motor model by re-simulating, as sketched earlier. To figure out how 

much a result depended on the initial setup, she might run the simulation again but this time 

imagining that the glasses were filled up very high or very low. This would help her learn that it 

doesn’t matter whether the water is above or below the midline. She might re-check her motor 

simulations against a visualization, or even experiment on or observe the motion of liquids in 

containers in the real world. Or she could reason about what part of the setup would have led to 

the conclusion and what part would have been irrelevant. These responses are not alternatives to 

simulation, but next steps that build on her initial simulation. Through this process, she will begin 

to learn which parts of her motor and visual models lead to which outputs, when each model is 

likely to fit the world and when it ought not be relied on, and other related facts: that is, she will 

resolve attribution and warrant uncertainty.   

This process of uncovering the workings of the model is central to prominent empirical theories 

of mental simulation. For instance, in the motor case, research finds that expertise with one sport 

can result in better pattern recognition in another sport. This isn’t because individual motor skills 

transfer from one domain to another (in general such transfer is weak), but rather because expertise 

involves a kind of meta-cognitive knowledge about the appropriate uses of simulation – the experts 

have learned something about attribution and warrant when it comes to the use of motor imagery 

for skill improvement.15 

In such cases, expertise in motor skill improves the outputs of  internal models, but it also renders 

an aspect of the model available for evaluation, which in turn provides new opportunities for 

training. Training requires holding up a part of the model for evaluation, and greater accessibility 

means that evaluation of the model and its output can draw on a wider body of evidence. Evaluation, 

of course, subsequently allows the model to be tuned and adjusted, and for its appropriate scope 

to be understood. And so over time, this iterative process resolves warrant and attribution 

uncertainty as the internal model is built and trained. To simplify somewhat, this is because 

attribution uncertainty is an accessibility problem, and warrant uncertainty is an evaluation 

                                                
15 Comparing motor transfer with cognitive transfer, Schmidt and Young (1987) summarize the 

state of the research: “When such measures are applied to experiments on motor transfer, the 

outcomes arc relatively consistent Motor transfer is generally very small” (pp59).  So one might 

expect that motor experts in one domain would not have any significant advantage in another 

related but distinct domain – and might even perform worse due to interference. Abernathy et al. 

(2005) found that to the contrary, experts in different sports performed significantly better than 

novices at pattern recognition and classification in a different sport from that of their expertise. 

Williams et al. (2006) compared expert and non-expert soccer players, finding that experts relied 

more on structural features where non-experts relied on superficial features. MacIntyre et al. (2014) 

theorize that these differences stem at least in part from a link between mental practice and 

metacognition: experts have enhanced abilities to imagine and simulate, and this is connected to a 

greater awareness of the appropriate use of simulation: “experts may simply possess greater meta-

cognitive knowledge of how to employ imagery effectively for skill improvement as compared to 

novices.” 



problem – and as we’ve seen, the two problems are tied together such that better accessibility 

makes better evaluation possible.  

We’ll now argue that unlike learning through simulation, learning through observation and 

learning through inference do not offer systematic ways of resolving warrant and attribution 

uncertainty. By “systematic” we intend to allow that sometimes, this uncertainty can be resolved 

by luck, or by brute external alteration such as a kind of re-programming, or even occasionally by 

a stroke of good reasoning or observation. But we hold that overall, neither observation nor 

inference are well-positioned for this role as compared with simulation. This argument will 

therefore presuppose that the thinker already has a need for simulation because of warrant and 

attribution uncertainty; we’ll take up the question of why a thinker would ever end up with this 

kind of uncertainty in Section 8. 

Consider a case discussed by Tal (2011). On his analysis, the use of simulation allowed physicists 

to confirm the Bose-Hubbard model in the following way. First, a series of observations were 

made concerning phase transitions, including one that seemed to fit with the Bose-Hubbard model 

(in Munich in 2001), and one that seemed not to fit with the model (in Zurich, 2004). After this, a 

third group of physicists ran a computer simulation that produced simulated predictions for what 

would be observed if the Bose-Hubbard model were true. The result of this simulation revealed 

that the second set of experiments from Zurich, which initially seemed to be at odds with the model, 

were actually the sort of result that we would expect to see on the Bose-Hubbard model. For our 

purposes, the important feature of this case is that the physicists already had the observations that 

would confirm their theory when they ran the simulation – but it was only after analyzing the 

simulation that they understood these observations as evidence in favor of the theory. Therefore, 

the epistemic function of the simulation could not have been filled by observation, since the 

observation had already occurred.  

Now, a perfect physicist might use impeccable inference to determine analytically the 

consequences of her theory. But the physicists studying the Bose-Hubbard model were presumably 

unable to do so; this is precisely the sense in which they were uncertain prior to the simulation. So 

just as with observation, inference cannot be a systematic solution to this problem. This is because 

physicists who could infer their way reliably from the theory to its various predicted observations 

would never be in this situation in the first place. Therefore, neither of the other learning methods 

will in general resolve warrant and attribution uncertainty.    

The preceding argument concerned the long-run use of simulation. In the one-shot case, our 

account suggests that thinkers can learn from the output of a single simulation, but this form of 

learning is fragile given the underlying uncertainty. One-shot reliability will be imperfect since 

warrant uncertainty prevents the thinker from being perfectly responsive to the scope and meaning 

of the output, unless by luck. In the one-shot water-pouring case, for example, when you began 

the simulation, you were either already justified in believing the output of the motor system or not. 

However, you did not yet believe the wide glass would spill first before carrying out the simulation. 

It would even be controversial to say that you implicitly believed it, since you would be unlikely 

to consistently behave as though it were the case, and your motor system may not even have 

represented this fact about the two glasses so much as other features of liquids that imply the wider 



glass will spill first.16 And so the simulation led you to believe the wide glass would spill first, and 

thereby to know it. Thus representational change associated with simulation enables reliance on 

one-shot simulation, but does not provide a new source of justification so much as enable access 

to a potential source to which the thinker is in some sense already connected. In contrast, in the 

long-run case, representational change to the model and its accessibility is an integral part of the 

thinker coming to have genuinely novel justification for her subsequent beliefs. 

Stochasticity in simulation also functions differently in the one-shot case than in the long-run case. 

While not all simulations are stochastic, most scientific simulations seem to be, and it is standard 

to model mental simulation as a kind of non-deterministic sampling (see Zhang et al. 2012, and 

Bramley et al., 2018, for two examples in different domains). Stochasticity looks like a liability in 

one-shot simulation, since the output may be an unlikely one that mischaracterizes the internal 

model and the target system. Rather, it’s only over the long-term, or with repeated one-shot 

simulations, that stochasticity emerges as a desirable feature of simulations, allowing the system 

to encode uncertainty while maintaining specificity.   

The combination of these two roles for simulation based on time-scale suggests an interesting 

consequence: because the long-run role changes the properties of the model over time, the one-

shot uses of simulation might depend on where they occur in the long-run process. In general, one-

shot learning will be more reliable later on in the process. 

We’re now in a position to see another benefit of long-run simulation related not to the process 

itself, or to its inputs or outputs, but to what triggers the use of simulation in the first place. 

Compare an expert simulator with a novice. The expert will be triggered to employ simulation 

more appropriately, and likely more often, than the novice; because her model makes more explicit 

and accurate predictions, the impetus to simulate will arise in contexts where her predictions are 

relevant, whereas the novice will have fewer and less explicit predictions that will relate to 

different circumstances precisely because they are less well calibrated. Of course, many uses of 

simulation may still be completely initiated by an external factor, such as a teacher asking you to 

solve a puzzle by imagining the pieces, or the authors of a paper asking you to consider the water-

pouring problem. But in many critical domains, successful simulation depends on simulating under 

the right conditions. And as the simulator becomes more and more knowledgeable, she will get 

closer and closer to meeting our definition of inference, at least in its weaker dispositional form. 

7. How Simulation Works: Changing accessibility conditions through representational 

extraction 

In Section 6, we suggested that simulations make information more accessible. In the long-run 

case, changes in accessibility enable enhanced evaluation and learning over time, whereas in the 

one-shot case, accessibility was not epistemically significant in terms of justification, but 

                                                
16 Of course, we can easily imagine a case where you do implicitly believe the output of the 

simulation even before you simulate, and then later come to explicitly believe it. In this case, you 

would not come to know by simulation since you already knew, but we might say that you now 

believe more firmly or understand better. Likewise, we’ve allowed for simulations that have only 

implicit representations as their output. How to treat these cases would depend on the theory of 

implicit knowledge.  



nonetheless played a role in explaining how you came to have knowledge of q. It might therefore 

be tempting to characterize learning through simulation as a process by which implicit knowledge 

becomes explicit knowledge, and center the epistemic function of simulation on this transition. We 

will suggest that this characterization is not quite right. 

The implicit/explicit characterization is compelling because it explains how knowledge is possible 

at all (it was there all along), and also what changes through learning (something formerly implicit 

becomes explicit). For instance, in the water-pouring problem, the answer was in some sense 

already encoded in the learner’s perceptual or motor system. On the other hand, one result of the 

simulation is that the answer is now encoded in a form that can be expressed in words, used as a 

premise in further reasoning, and so on.  

The idea that a mental simulation can render implicit knowledge explicit is reflected in claims 

about thought experimentation in both philosophy and psychology. For example, Mach (1897, 

1905) suggested that thought experiments reveal “instinctive knowledge.” Clement (2009) writes 

that mental simulations can “draw out implicit knowledge” that can then be described in linguistic 

form. We think this idea gets something right, but also faces serious limitations. 

First, outside a handful of specialized literatures within psychology, it’s unclear what it means for 

something to be implicit or explicit. Are these claims about the structure of mental representations? 

About the mechanisms by which they are accessed? And what is it that changes through learning? 

Ideally, an account of learning through simulation should support answers to such questions.  

Second, some cases of learning through simulation seem to involve transitions within the realm of 

the implicit, or within the realm of the explicit. For instance, in the rodent example provided by 

Buzsaki, an implicit representation about possible head directions could be made available to an 

implicit module encoding memory for past navigational trajectories. Within the realm of the 

explicit, the physics modeler’s computer simulation could result in a transfer of explicit general 

assumptions about bosons in a lattice into explicit predictions about what particular signals will be 

detected by a scanning device. A better way of describing this change in availability is in terms of 

a change in the accessibility conditions for some information, where this change occurs via 

representational extraction through simulation. Below we unpack these ideas.  

Following Lombrozo (forthcoming), we make the relatively uncontroversial assumption that 

“different mental representations are available to different mental processes.” With this 

assumption in place, we can see that the output of a mental simulation will be available to some 

processes, but not to others. For example, the output of a particular motor simulation might be 

available to guide an arm movement, but not to verbally report; the output of a visual simulation 

of the water-pouring problem, on the other hand, may well be available for verbal report, and also 

as a premise in further reasoning. The crucial observation is that a mental simulation will often 

generate a representation – the output – that makes information available to a system in a new way. 

Prior to the mental simulation, a simulator’s motor system may have encoded a regularity between 

glass width and pouring angle, but not in a form that was available for verbal report or further 

verbal reasoning.  



This approach goes beyond an implicit / explicit distinction in recognizing a much broader range 

of accessibility conditions for information.17 We can posit a range of mental processes, each of 

which imposes some constraints on what it will accept as “input.” A mental simulation, like 

inference, produces “new information” in only a limited sense; instead, what it offers is a change 

in accessibility conditions, and hence in how existing information can be deployed. The result is 

what we call “representational extraction,” which can occur in both one-shot and long-run cases. 

In a case of one-shot simulation, information that may be encoded only implicitly in the process 

by which a simulation operates can constrain the output of the simulation. As a result, downstream 

systems will benefit from this information indirectly – by virtue of access to the output, which has 

been shaped by the relevant information. 

Turning to the case of long-run simulation, we can see an additional way in which simulation can 

“extract” a new representation. As simulation is repeated and the simulator begins to resolve her 

uncertainty concerning attribution and warrant, she can come to represent the dependencies, 

relationships, and other content of the internal models that underwrote the simulations. Most often, 

this process will also involve inference. For example, she might infer a particular dependence 

relationship from repeated pairs of initial conditions and outputs, just as we described the water-

pourer as playing around with water levels to see how changes would affect the output. Even if the 

internal workings of the model started out fully opaque, this backwards inference would 

increasingly ground her knowledge of the relationships encoded in the model.   

Representational extraction explains the puzzle posed by the Hallucinated Replay example: how 

could less accurate simulated “observations” be more useful than more accurate genuine 

observations? The answer is that simulation, unlike observation, results in representational 

extraction – the simulated “observations” extract, or make available, consequences of the model 

that were previously only represented in a more limited way. Without extraction, self-training is 

necessarily limited – as we’ve argued, it is only because parts of the model are exposed to evidence 

that they can be improved. In Hallucinated Replay, the agent could “improve” parts of the model 

that could not ever be trained by experience, since they predicted what would happen after an 

impossible state of the world. But extracting even these steps has a use, since these impossible 

transitions are related to other parts of the model and partly determine higher-order generalizations.  

Representational extraction is by its nature a way of making a piece of one’s representation 

exposed to a wider range of one’s evidence, a process that has not merely intellectual value but 

                                                
17  Philosophers are increasingly recognizing that accessibility of information is a major 

determining factor in producing actions, guiding reasoning and every other cognitive activity: it’s 

not just what you believe that matters, but which beliefs you are disposed to access in a given 

context. Harman (1986) drew attention to relevance and access as central to changes in belief (see 

also Stalnaker (1991)) and more recently Elga and Rayo (ms.) provide a semantic framework for 

representing accessibility relationships. These theories essentially take on the question of how 

limitations in accessibility should be understood, and how it is rational to respond in light of these 

limitations. Our approach is consistent with these ideas, but considers a slightly different question: 

we are concerned not (only) with the conditions under which a belief is accessible for explicit 

report or reasoning, but more broadly in the conditions under which a representation (which need 

not be a belief) is accessible to a mental system (which need not be verbal report or reasoning). 

 



practical pay-off.  

8. What Kinds of Learners Need to Simulate? 

We have argued that observation and inference don’t make good substitutes for simulation. In 

doing so, we have described thinkers who have uncertainty about their own internal models that 

only simulation can address. However, this uncertainty need not characterize every thinker. So we 

are now in a position to ask: what kind of creature would need to simulate in the first place? Or, 

what kind of learning environment would make simulation necessary?  

Throughout this paper, we’ve contrasted simulation to inference and observation. This contrast 

reveals two conditions that must be met for simulation to be necessary (in the sense that it cannot 

be replaced by observation or inference): 

1. The thinker must be limited in the kind of information she has free access to. That is, she 

sometimes cannot perform a particular experiment or make a particular observation without 

paying a significant cost or incurring a significant risk. 

2. The thinker must have some representational opacity.  

Condition 1 makes it so that she cannot substitute experimentation for simulation, and Condition 

2 makes it so that she cannot substitute inference for simulation.  And our analysis of the distinctive 

uncertainty that rationalizes simulation allows us to see these conditions as following directly from 

the function of simulation. If the agent could experiment as much as she desires, contra Condition 

1, she could figure out exactly how reliable her various internal processes are. That is, she could 

resolve warrant uncertainty. And if the agent were totally transparent to herself, contra Condition 

2, she would be able to resolve any attribution uncertainty. Together, the two conditions make 

simulation a vital capacity.   

All of us live in environments with limited evidence, and thereby meet Condition 1. Even the most 

idealized agents are presumably still subject to this limitation – and in fact, even with abundant 

evidence, limitations in cognitive capacity might create trade-offs between collecting evidence and 

making plans. Momennejad et al. (2018) think of offline simulation as crucial for this reason: it 

allows the agent to save time and cognitive resources at the moment of decision. 

But why would a thinker have representations that are opaque to her? Or in other words, could 

there be a reason that some mental processes are at least initially a black box? One kind of opacity 

springs from modularity, even in weak forms. If the thinker is made up of specialized modules that 

each employ their own representational format, it might be costly to translate between them. 

Further, there might be no lossless means of translation. In either case, this would result in some 

content in one module being inaccessible to another module or cognitive process, as we have 

already suggested.18 

                                                
18 Opacity could arise even in agents who are only very weakly modular – for instance, a thinker 

who shifts between two styles of thought (depending on context) that broadly recruit the same 

resources. This thinker may not be able to access both ways of thinking in every context, and yet 

the capacity to simulate might allow her to jump between contexts by setting up a virtual version 

of another context.  



At this point, we can return to the question of the relationship between simulation in science and 

mental simulation.19 Our account appeals to epistemic features (warrant and attribution uncertainty) 

that can be applied to a thinker, a scientific community, or even to other kinds of group agents. 

Throughout the discussion, we’ve drawn attention to common features between simulation in these 

disparate contexts, such as the propensity to re-simulate. Although representational opacity might 

emerge for different reasons at individual and group levels,20 in both cases simulation can reduce 

opacity through representational extraction that changes accessibility conditions: information 

becomes available to other parts of the mind, or to the human operators of machine simulations. 

We therefore expect the core features of our account to apply to learning through simulation quite 

broadly. 

9. Conclusion 

This paper has addressed the question: how can we learn through simulation? After considering, 

and rejecting, models of learning through simulation that treat simulation as a kind of observation 

or a kind of inference, we have presented a theory on which simulation is distinct from either of 

these better-understood forms of learning. Simulation does not presuppose an understanding of 

how the output was generated (attribution) or how the process of generation should be relied on 

(warrant). However, simulation over time makes progress on resolving this uncertainty through 

representational extraction.   

Our account sheds light on our starting point: the idea that simulation is somewhat like observation 

and somewhat like inference. Simulation is somewhat like observation in that the thinker gets the 

output “from outside.” This is because simulation involves representational extraction, or the 

bringing in of information from one cognitive system or model to another. Simulation is somewhat 

like inference in extracting something from what we already have. Moreover, as we simulate more 

and more, and get more and more evidence from other sources, our internal model goes from a 

work-in-progress to, hypothetically, a complete product. Simulation aims at resolving attribution 

and warrant uncertainty, and in the limit when the uncertainty is fully resolved, simulation 

becomes a fully transparent way to process information through a fully trained internal model. In 

other words, simulation becomes inference.  

 

                                                
19 See Bratman (2013) or Gilbert (2000) for a related discussion. 

20 Representational opacity will potentially be instantiated differently across individual and group 

agents. For instance, in the Bose-Hubbard case, representational opacity might result from the fact 

that the computer model contained latent information about the likelihood of various observations 

based on the theory – and this information was opaque to the scientists debating the various 

theories. But we might also consider the information to be represented in the Bose-Hubbard theory 

itself, rather than the computer model. Addressing this question, and other related issues, would 

require a theory of the group thinker, or the group of thinkers, that is beyond the scope of this 

paper. 
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