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The preference for simple explanations, known as the
parsimony principle, has long guided the development
of scientific theories, hypotheses, and models. Yet recent
years have seen a number of successes in employing
highly complex models for scientific inquiry (e.g., for
3D protein folding or climate forecasting). In this paper,
we reexamine the parsimony principle in light of these
scientific and technological advancements. We review
recent developments, including the surprising benefits of
modeling with more parameters than data, the increasing
appreciation of the context-sensitivity of data and mis-
specification of scientific models, and the development
of new modeling tools. By integrating these insights, we
reassess the utility of parsimony as a proxy for desirable
model traits, such as predictive accuracy, interpretabil-
ity, effectiveness in guiding new research, and resource
efficiency. We conclude that more complex models are
sometimes essential for scientific progress, and discuss
the ways in which parsimony and complexity can play
complementary roles in scientific modeling practice.

scientific modeling | parsimony | complexity | Ockham’s razor

“Plurality should not be posited without necessity’’
–Ockham, 13xx/1986

Imagine you are assessing the effectiveness of a new, untested
drug. Should you start with the parsimonious assumption that
the treatment has no beneficial effect until proven otherwise?
Now consider aspirin, a drug known to relieve pain. Given
its proven effects on human physiology, should you still
assume that it has no side effects? For aspirin, but not the
untested drug, it might be more reasonable to make the less
parsimonious assumption that the drug has multiple side
effects (1). Now, imagine you are choosing an approach to study
human language acquisition. Chomskyan linguistics aims to
explain the richness and expressivity of human languages by
positing a parsimonious set of universal grammatical rules (2).
Conversely, modern large language models (LLMs) are highly
complex, learning from vast datasets without strong priors over
possible linguistic structures. These models generate coherent,
human-like text, and despite their complexity, offer scientific
insights that traditional theories do not (3).

These examples highlight the nuanced role of parsimony
in modern scientific practice. This paper asks: When are more
parsimonious models beneficial? What are they beneficial for?
And what is model parsimony in the first place? We first distin-
guish between two competing understandings of “parsimony” in
scientific modeling, one based on a model’s flexibility in fitting
observed data and the other based on the model’s number of
meaningful components (e.g., causes, mechanisms, or variables)

(Section 2, Box 1). Then, we review the ways in which these two
forms of parsimony do and do not align with generally desirable
properties of scientific models, such as predictive accuracy,
interpretability, and others. We focus on new tools and results
that reinforce or challenge traditionally assumed relationships
between parsimony and these desirable properties of models
(Section 3). We conclude that parsimony is not a universal
guide to scientific progress; rather, parsimony and complexity
should be employed as complementary principles in scientific
modeling (Section 4). Rather than substituting existing in-depth
resources, this paper serves as an entry point, inspired by
recent counterintuitive findings that challenge common views
on parsimony in science, and aims to inspire further research
into its evolving role.

1. Is Parsimony Used in Modern Scientific
Practice?

Considerations of parsimony lie at the core of our everyday
reasoning. When laypeople assess explanations, they often
prefer explanations that appeal to fewer causes (4, 5) or
that are less flexible in accommodating the data (Fig. 1A; 6).
Similarly, scientists prefer to explain a collection of findings
by appealing to one unifying mechanism rather than several
distinct mechanisms or factors. This need for parsimonious
accounts has been linked to limitations of human cognition that
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Box 1.

Glossary.

Scientific model: Formal representation of a target
phenomenon. Some (process or mechanistic) models
reflect generative processes, while others simply
describe the data.
Parsimony by components (Section 2.1): The
principle of preferring a model that contains a smaller
number of meaningful components (e.g., causes or
mechanisms).
Parsimony by constraints (Section 2.1): The princi-
ple of preferring a model that is less flexible, or could
capture a smaller number of distinct data patterns.
Model fitting/training: The process of identifying
the instance of a model that best matches the data
(e.g., identifying the best-fitting parameter values or
structure).
Model misspecification: When a model cannot
capture the data-generating process, regardless of
the training data and fitting procedure.
Bias: Error attributable to systematic factors, like
structural limitations of a model (e.g., misspecifica-
tion), properties of the training data, or the fitting
procedure (Fig. 1).
Variance: Error attributable to a model’s sensitivity to
noise in the training data. Models with high variance
capture noise instead of regularities, or overfit, the
training data (Fig. 1).
Regularization: Techniques used to reduce a model’s
variance by penalizing its complexity.

affect our ability to generate, understand, use, and communicate
explanations (7, 8).

Parsimony also has a key place in the development of scien-
tific models, playing formal and informal roles in how scientists
identify, construct, and assess their models. Across scientific
domains, developing a more complex model often needs to
be justified by stronger evidence, whereas coming up with a
more parsimonious model is viewed as a scientific contribution
in itself (9–11). When designing a new model, scientists are
often trained to start with a simple candidate model and to
iteratively scale it up until it captures the essential aspects of
the data (12, 13). Parsimony plays a central role in formal model
selection: For example, popular measures for selecting between
models or hypotheses [e.g., AIC, BIC, Bayes Factor (12, 14–16)]
attempt to strike an optimal balance between goodness of fit
and parsimony (17, 18).*

The historical preference for parsimonious models stands in
contrast with recent developments in science and technology,
which have demonstrated that extremely complex models can
facilitate scientific progress by, e.g., predicting the 3D structures
of proteins (21), improving climate forecasts (22), and enhanc-
ing scientific understanding of the mechanisms of language
acquisition (3). As a result, some disciplines—including physics
(23), systems biology (24), and medicine (25)—are becoming
less concerned with parsimony. Other fields such as finance,

*The main goal of these methods is arguably to assess predictive accuracy; the importance
of parsimony arises as an automatic by-product [e.g., note their connection to cross-
validation (19, 20)].

A B

Fig. 1. Illustration of different forms of parsimony. (A) Parsimony by
constraints. Upper: A more parsimonious model (yellow) assigns a high
probability to only a narrow range of events, while a more complex
model (purple) widely spreads its predictions. Lower: A more parsimonious
model (yellow) captures a subspace of phenomena that a more complex
model (purple) can accommodate. (B) Parsimony by components. Upper: A
parsimonious model (yellow) works with fewer input variables than a more
complex model (purple). Lower: A parsimonious model (yellow) postulates
fewer latent variables/causes than a more complex model (purple).

engineering, and computer science often rely on complex mod-
els, sometimes overlooking simpler alternatives that can lead to
more robust and accurate results (26–31). With more complex
models being increasingly adopted in scientific disciplines, there
is a need to reexamine the role that parsimony plays in science.

While our intuitive preference for parsimony has shaped
scientific practice, this preference is neither universal nor uni-
versally beneficial. A preference for parsimony has not been
obviated by scientific advances; rather, its usefulness depends
on the modeling context and goals (Section 3). Recognizing that
parsimony is just one of many tools available to scientists is cru-
cial for advancing our ability to learn about the world (Section 4).

2. What is Model Parsimony?

In this section, we articulate two ways in which model parsimony
has been conceptualized: on the basis of either a model’s
flexibility or the number of meaningful components it consists
of. These competing understandings of parsimony have been
used interchangeably to justify parsimony as a criterion for
scientific modeling. We then discuss the process of specifying
a parsimonious model, which requires a set of judgments on
the part of the scientist. This background will set the stage for
our main discussion of the utility of parsimonious models across
scientific contexts in Section 3.

2.1. Two Forms of Parsimony. Model parsimony is a multi-
dimensional concept that has been thought about in many,
sometimes contradictory, ways. Many notions of parsimony can
be organized into two broad categories.† These categories will
be essential for understanding the arguments for and against
the utility of parsimonious models for different modeling goals
in Section 3.

†There are other ways to define parsimony—e.g., by directly associating it with desirable
model properties such as interpretability or the ease with which the model can be
developed and analyzed. In this paper, we do not adopt a definition of parsimony that
takes any of these model properties for granted; instead, Section 3 explores whether
parsimony, defined as either of the two forms above, serves as a successful proxy for the
other desirable model properties.
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2.1.1. Parsimony by constraints. (Fig. 1A) appeals to a model’s
limited flexibility, or lack of capacity to accommodate different
potential patterns in the data.‡ Models that are parsimonious
in this way anticipate specific empirical outcomes with greater
confidence. To illustrate, consider the model predicting the
effect of an untested drug. A parsimonious model might predict
that the drug has no effect. This prediction is specific and narrow-
it only allows for outcomes in which the drug has no effect at
all. On the other hand, a less parsimonious model might predict
that the drug could have any effect, whether positive or negative,
and of any magnitude. This latter model is more flexible and can
accommodate a wider range of possible outcomes, and thus,
is less parsimonious by constraints. Bayesian instantiations of
parsimony align with this intuition of parsimony by constraints
(32, 33). To enforce parsimony by constraints, scientists typically
select models with fewer parameters or effective parameters
(34, 35), less expressive functional forms (36), more precise prior
distributions (32, 37), shorter description length (38–40), lower
rank (41), or other criteria.
2.1.2. Parsimony by components. (Fig. 1B) defines the complex-
ity of a model as the number of meaningful components it
has (4, 38, 42, 43). These components can include types or
instances of variables, independent and root causes, or distinct
processes represented in the model. To illustrate, consider
our example of modeling human language. A parsimonious-
by-components model would aim to explain the richness of
human languages with a minimal set of grammatical rules. For
example, Chomsky’s Theory of Universal Grammar proposes
that a small number of fundamental rules can account for the
vast diversity of languages spoken around the world. In contrast,
a less parsimonious model might employ a larger set of rules
tailored to different languages. While this model might explain
the structure of different languages more precisely, it is more
complex by components because it postulates more rules.

While distinct, these two forms of parsimony are intercon-
nected (Box 2). Moreover, assessing model parsimony in practice
requires many nuanced choices (Box 3). Some of the ensuing
discussion in Section 3 will apply to models that are both
parsimonious by constraints and by components, in which cases
we will not explicitly distinguish between the two forms. In other
parts, we highlight where the two notions of parsimony diverge,
showing that often only one—or neither—aligns with certain
desirable model properties.§

2.2. Specifying a Parsimonious Model. Specifying parsimonious
models requires that the modeler make a series of judgments
as to what components to include or constraints to impose. One
might impose a linear relationship between the model’s inputs
and its predictions, give the model access to only a few key
variables to predict the outcome, or assign more precise prior
distributions to the model parameters. These judgments can
incorporate a variety of considerations, which include specific
modeling goals and prior domain knowledge about the structure
of the target phenomena. Well-specified models resemble the
target phenomena.

For many purposes, however, models are deliberate over-
simplifications (46), i.e., the modeler is aware that there is a re-
semblance gap between the target phenomenon and the model.
When this gap is present (whether deliberately or not), the model
‡A model can predict one or several of many different aspects of a target phenomenon,
and so a potential data pattern can refer to many different types of outcomes. For example,
different models make predictions at different levels of abstraction, ranging from very
specific outcomes (e.g., it will rain tomorrow at 3PM in Moscow) to more temporally and
spatially extended characteristics (e.g., the average amount of precipitation in Moscow
across months will follow a normal curve with the peak in February).
§Interestingly, although these two understandings of parsimony are often used inter-
changeably, empirical studies frequently focus on one notion while using the general
“parsimony” term. This distinction will be evident in Section 3, where some subsections
emphasize one interpretation of parsimony—e.g., predictive accuracy focuses on parsi-
mony by constraints while interpretability often focuses on parsimony by components.

Box 2.

(in-depth). Alignment of two forms of parsimony.

Parsimony by components and by constraints align
when model components can adjust based on
observed data. For example, adding input variables
(components) in multiple regression expands the
set of input–output relationships consistent with
the model. The two forms also align when there is
uncertainty about the model components because
this uncertainty allows for a wider range of possible
model behaviors. For example, state-of-the-art cli-
mate models incorporate many structural hypotheses
about which there is substantial disagreement or
uncertainty within the scientific community. Because
of this uncertainty, a given climate model can be
consistent with many outcomes (44). Misalignment
between the two forms of parsimony occurs when
model components are neither adjustable nor
uncertain. For example, quantum electrodynamics
posits many theoretical components but makes
extremely precise predictions, and is in that sense
inflexible (45).

is misspecified. All else equal, models that are less parsimonious
by constraints can extract a larger number of patterns from data,
and so generally run a lower risk of misspecification.

3. Are Parsimonious Models More Useful
Models?

“All models are wrong, some are useful’’
–Box, G., 1976

“Some models are useful, but how do we know which
ones?’’

–Bürkner, Scholz & Radev, 2023 (47)

In this section, we discuss the reasons why parsimonious
models should or should not be preferred in specific situations.
We assess model parsimony as a tool for achieving specific
desirable model characteristics. In particular, we discuss the de-
gree to which the parsimony principle guides—and misguides—
scientists in pursuit of models that are more accurate in their
predictions (Section 3.1), interpretable (Section 3.2), useful in
guiding new research (Section 3.3), resource efficient (Section
3.4), suitable for working with limited data (Section 3.5), or
aligned with domain-specific assumptions about target phe-
nomena (Section 3.6). These model properties are associated
with different scientific goals, which include understanding
phenomena, predicting future events, controlling systems, and
communicating scientific knowledge to different audiences,
from children to scientific communities.¶

We note that much of the discussion in this section is technical
and particularly relevant for those who employ models in their
work. For readers seeking a more introductory and accessible
overview of parsimony, we recommend (43) and (42).

3.1. Predictive Accuracy. Models are often used to inform our
expectations of new events based on past observations. In this
¶The aim of this paper is to assess the relationships between model parsimony and these
specific model properties; which modeling goals to prioritize is a key decision that remains
at the discretion of readers and modelers.
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Box 3.

(in depth). Using parsimony.

Assessing a model’s parsimony introduces many
nontrivial issues. For example, it is not clear whether
parsimony should be a property of the model itself
or of the model relative to the data it describes (e.g.,
number of parameters is typically a property of the
model independent of the data, while the effec-
tive number of parameters is a relative property).
Moreover, depending on the context, one may want
to evaluate the parsimony of a class of models or
of a specific model instance (i.e., a model with its
structure and parameter values fixed). A related
concern is when parsimony should be estimated—
before or after the model is fitted to data. Finally,
when counting components or constraints of a
model, it is often unclear what exactly counts as a
component or constraint. For example, one might
have to decide how abstract the components could
be or whether nodes, root causes, or variables
constitute independent components.

Another significant challenge involves choosing
a way to integrate parsimony into the scientific
modeling process. In many formal procedures,
parsimony trades off with goodness of fit (e.g., in AIC
or BIC) or it is used as a tie-breaker when choosing
between two models that otherwise perform equally
well. More informally, parsimony is often a key
consideration when scientists choose a model to
start with; for example, they might prefer to start
with a minimal causal model that only contains one
key variable, and only expand this model if there is
sufficient evidence that additional variables are at
play. In real-world applications, the evaluation and
value of parsimony depend on how it is defined,
instantiated, and incorporated into the scientific
modeling process.

section, we discuss the way parsimony affects the accuracy of
a model’s predictions. Unless otherwise specified, here we use
the word parsimony in the sense of parsimony by constraints.

Parsimony can both help and hurt a model’s ability to make
accurate predictions. Parsimony helps when models are simpli-
fied based on reliable assumptions, leading to robust predictions
even from noisy data. However, parsimony hurts when these
assumptions are incorrect, making the model unable to capture
the structure in the data. Moreover, while the expressivity of
complex models was traditionally thought to be detrimental for
their robustness, recent research shows that complex models
can also exhibit high robustness to noisy data.
3.1.1. Simplifying assumptions. Specifying a parsimonious model
necessitates positing assumptions to inform the simplifying
constraints (Section 2.2). Well-specified models efficiently learn
from data and make accurate predictions in new situations
(48). Domain-specific knowledge often informs constraints that
enhance predictive accuracy, such as assuming most variables
do not affect the outcome, that variables are linearly related,
or that only recent history matters for future predictions. For
example, when assessing the effectiveness of a new, untested
drug, starting with the assumption that the drug has no effect

until proven otherwise can lead to more reliable predictions
if most drugs indeed have no effect. Similarly, in many cases
of predicting human behavior in the real world, e.g., in court
decisions on recidivism (49) or when predicting the future of
fragile families (50), there is little evidence that complex models
are superior to parsimonious ones that rely only on a few of the
most important variables (51).

What if one lacks well-informed assumptions to simplify the
model? Imposing constraints on a model restricts the number
of patterns it can account for. When constraints are based on
misinformed assumptions, the parsimonious model becomes
misspecified, and is unable to capture the structure in the data
(32, 52). For example, given aspirin’s known effects on human
physiology, models that anticipate that it also has multiple
side effects might yield more accurate predictions than those
assuming no effects (1). Misspecified models learn less efficiently
(53, 54) and can even “hallucinate” patterns that are not present
in the data. For example, parsimonious models used to analyze
brain activity can erroneously infer the presence of oscillatory
components when brain activity slowly changes in space and
time (55). In quantitative genetics, imposing constraints on
genetic covariance matrices can lead to biased estimates, with
models often learning the wrong subset of principal compo-
nents (56). More complex (less constrained) models are better
equipped to account for the data patterns they encounter.

In many disciplines, unduly constrained modeling is linked to
low prediction accuracy. Parsimonious-by-components models
that assume that only a few factors affect the outcome can
fail to make accurate predictions in contexts where these
excluded factors do matter. For example, many models in the
psychological and social sciences abstract away from details of
the populations, times, locations, and other contextual aspects
of the data. These details are, however, considered as key
variables that affect psychological outcomes (57–59). Thus, some
of the constraints used to simplify scientific models are not
aligned with domain-specific knowledge that could improve a
model’s predictions.
3.1.2. Robustness. Conventional wisdom suggests that models
with many parameters, which are complex by both components
and constraints, are prone to overfitting: The model’s param-
eters are fit so closely to the observed data that they capture
noise instead of stable patterns. These models often capture the
observed data better (decrease bias; Section 3.1.1), but slight
perturbations of the observed data lead them to make wildly
different predictions (increase variance). This idea is captured
by the bias-variance trade-off (52).

Explicit regularization techniques are often applied to improve
robustness, encouraging the fitted models to be more parsimo-
nious. Some forms of explicit regularization promote sparsity,
enforcing parsimony by components by limiting the number of
parameters. Others favor instances of the model that balance a
close fit to the data with small parameter values.

Interestingly, recent findings show that robustness can be
achieved without explicit regularization, i.e., without an ex-
pressed preference for model parsimony. For example, models
with many more parameters than data points can achieve both
low variance and low bias (60–63). Fig. 2 illustrates this phe-
nomenon, known as double descent, where increasing number
of parameters first raises and then lowers prediction error.
As the number of parameters continues to grow, bias steadily
decreases, while variance follows a bell-shaped curve, enabling
models with an excess of parameters to achieve smooth and ro-
bust fits (64–66). Open questions remain, such as how well these
apparently complex models generalize to entirely new settings.

The work on the double descent phenomenon suggests that
although increasing the number of parameters increases the
number of components and reduces the constraints imposed by
the model structure, the process of model fitting is nevertheless

4 of 10 https://doi.org/10.1073/pnas.2401230121 pnas.org
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Fig. 2. Double descent of prediction error. Degree-one, degree-three,
degree-twenty, and degree-one-thousand polynomial regression fits (ma-
genta; from Left to Right) to data generated from a degree-three polynomial
function (green). Low prediction error is achieved by both degree-three and
degree-one-thousand models. Figure adapted from ref. 67.

guided toward model instances that generalize well. This may
be due to the behavior of commonly used model selection
and model-fitting algorithms (65, 68). These implicit constraints
on how the process of model fitting navigates the space of
possible model instances are known as implicit regularization.
This finding has prompted a line of work exploring new ways
to assess parsimony for models with an excessive number of
parameters (69, 70).

Double descent shows that i) the constraints placed on a
model can come from a variety of, sometimes surprising, places
that do not reflect the expressed preference of the modeler, and
that ii) explicitly favoring more parsimonious models is not the
only path to robust predictions; often, models that are extremely
expressive and unconstrained in some senses can discover more
robust solutions.

3.2. Interpretability. Many scientists use models to better un-
derstand phenomena of interest. Here, we discuss the rela-
tionship between a model’s parsimony and interpretability. We
consider two forms of interpretability: Intrinsic interpretability
refers to an understanding of the inner workings of the model
itself, while external interpretability refers to insights about the
real-world phenomena gained from using the model. In this
section, we use the word “parsimony” in the sense of parsimony
by components.

Parsimony helps intrinsic interpretability when it aligns with
human cognitive limitations, making models easier to under-
stand and use. However, this relationship is not universal
given the subjective nature of intrinsic interpretability and new
techniques that make complex models more understandable
(Section 3.2.1). Conversely, parsimony may harm external in-
terpretability when it leads to model misspecification, resulting
in biased representations of the world—in such cases, an
understandable model fails to communicate the structure of
the world and, therefore, fails to serve as a powerful explanatory
tool for a scientist (Section 3.2.2).
3.2.1. Intrinsic interpretability. Let us first discuss intrinsic model
interpretability defined as humans gaining a sense of under-
standing of what the model is doing.# In many real-world

#Human sense of understanding can diverge from actual understanding (71, 72). Even
scientists have been shown to misinterpret very parsimonious models. For example,
Soyer and Hogarth (2012) found that academic economists made faulty inferences when
interpreting a simple linear regression with one variable, also failing to notice their lack of
insight (73).

decision-making scenarios, it is important that humans can use
models in a transparent and reliable way. When a model has
few components it might be easier for people to 1) anticipate
the qualitative nature and scope of the patterns the model
predicts, and 2) understand the effects that model components
have on the model’s predictions. Models with many components
can easily become unintelligible (74, 75). Parsimonious models,
when they are more intrinsically interpretable, are more usable
in real-world scenarios. For example, parsimonious tree models
have helped doctors when prioritizing victims at the site of
an accident or military personnel when making life-and-death
decisions at military checkpoints (76).

However, parsimony is not a universal guide to intrinsic
interpretability. Some parsimonious models are very difficult to
interpret, whereas some complex models are very intrinsically
interpretable. For example, interpreting nonlinear models can
be very difficult. A nonlinear model with just a single parameter
can produce patterns of arbitrary complexity, from a linear trend
to the contour of an elephant, making it extremely challenging
to interpret that single parameter (77). Neural network models
with only two neurons can produce a great variety of behaviors,
with intensive study devoted to understanding the scope of
these behaviors (78). On the other hand, specific structural
choices can make complex models more interpretable than
their more parsimonious counterparts. For example, a sparse
model with many parameters, only a few of which are sensitive
to a given model’s input, might be seen as less parsimonious
by components than a dense model with few parameters,
each of which responds to a variety of inputs. However, the
sparse model might actually be more interpretable, since the
correspondence between the inputs and parameters can be
more easily inferred. These examples highlight that parsimony
is not a reliable proxy for intrinsic model interpretability.

Another reason why intrinsic model interpretability can come
apart from parsimony is that model users can differ in how they
understand the model. Some models can include many low-level
components, but still be very interpretable at a more abstract
level. Intrinsic interpretability often hinges on a scientist’s prior
knowledge about the domain and their ability to break down the
model into modules and/or a hierarchy (79–81). For example,
O’Reilly and Frank (2006)’s (82) computational model of working
memory includes thousands of neurons whose learning dynam-
ics are determined by the areas these neurons are located in.
While difficult to interpret at the level of individual neurons and
their interactions, this model offers insights when abstracting
from individual neurons and considering brain areas. Parsimony
in either form fails to account for the differences in expertise
and prior knowledge that affect individuals’ ability to interpret
scientific models.

The relationship between parsimony and intrinsic inter-
pretability is further complicated by new methods developed
to understand the workings of complex models. Methods for in-
terpreting complex models include “explainable AI” techniques,
which peer into the black box of complex models (83, 84). Ad-
ditionally, scientists employ cognitive experiments, which treat
models as participants to systematically assess their responses
to stimuli, and ablation studies, which systematically remove
parts of a model to assess their impact on performance, to gain
insights into complex models (85, 86).
3.2.2. External interpretability: Relating the model back to the
world. Producers and consumers of models are typically in-
terested not only in understanding how the model itself is
operating, but in using the model as a tool to explain the world.
This involves assessing whether the model’s components and
their estimates accurately reflect relevant aspects of the target
phenomenon. For example, when interpreting the estimated
effect of age on susceptibility to a certain drug in a regression
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model, one might be interested in the estimated age parameter
to the extent that it characterizes the relationship between age
and susceptibility in the real world. Thus, external interpretabil-
ity ensures that the components of the model provide accurate
and relevant insights into the phenomena being studied (87).

As discussed in Sections 2.2 and 3.1.1, the ability of a parsi-
monious model to faithfully represent the target phenomenon
depends on the quality of the assumptions used in the specifica-
tion of the model. Given the presence of or potential for model
misspecification, the relationships between the components
of the model are distinct from the relationships between the
corresponding aspects of the world, and so more parsimonious
models can exhibit lower external interpretability. The compo-
nents of the model then offer little in terms of reflecting the
structure of the target phenomenon or anticipating the effect
of changes in the world (88). For example, Wagenmakers et al.
(89) provide a demonstration of how a relationship between two
variables (LEGO price and the minimal age printed on the box)
can be estimated as positive (LEGO boxes for older kids are more
expensive), negative (LEGO boxes for younger kids are more
expensive), or null, depending on whether important mediators
(e.g., the number and weight of the LEGO pieces) are included
in the model (see refs. 90 and 91 for other examples). Similarly,
when estimating the effect of an untested drug, omitting key me-
diators can lead to qualitatively different conclusions about its
effectiveness. In this way, making a model more complex is often
required to use it to faithfully represent and interpret the world.

3.3. Effectiveness in Guiding New Research. Models help sci-
entists conduct new research, for example, by helping them
design better experiments or choose more useful questions
to be addressed in future studies. In this section, we explore
parsimony as a heuristic for building models that are successful
at guiding scientists to conduct better research.
3.3.1. Guiding scientific reasoning. Parsimonious models can
serve as helpful reasoning tools. More parsimonious models
invite new research more readily when they are easier for
scientists to intuit, adapt to new settings, or anticipate empirical
implications of (Section 3.2.1). To the extent that the specific
form of parsimony conforms to the constraints of scientific
reasoning and communication,|| parsimonious models can serve
as helpful “intuition pumps” (92). Moreover, the process of
constructing parsimonious models might lead a scientist to
conceptualize new features or dimensions, putting them in a
better position to ask new research questions (71, 93–95). Thus,
parsimony enhances scientific reasoning when it effectively
interacts with the constraints of human cognition.
3.3.2. Guiding research paradigms. Relying on parsimonious
models to guide new research results in biases in the scientific
process; whether or not these biases are desirable is a matter of
context and debate. For example, models that are parsimonious
by constraints may result in science progressing as a series of
sequential hypothesis tests (96, 97).

Historically, parsimonious-by-components models have
been associated with generality, suggesting that models with
fewer domain-specific details can inspire research across
diverse fields (98), although this relationship has recently
been challenged (99). Conversely, using parsimonious models
has also been linked to fragmented and focused efforts to
study toy problems in well-contained scenarios (100–102). For
example, attention, perception, memory, and categorization
are all pursued as different subfields in cognitive psychology,
each of which uses parsimonious models to explain behavior
in narrow ranges of well-controlled environments. Setting
||These cognitive constraints are mostly relevant to human-centric science; AI-augmented
science may move past the human cognitive limitations constraining the ways models are
used to guide new research.

up new studies to test these models often results in reusing
the narrow paradigms that these models are designed to
capture. To illustrate, scientists comparing decision models
that assume a small number of attributes to be relevant often
rely on stylized experimental paradigms where participants
compare options that differ only in these attributes. Alternative,
integrative modeling approaches instead aim to develop
mechanistic accounts that capture phenomena in a wide range
of scenarios (e.g., human behavior across tasks), and typically
lead scientists toward more complex, context-sensitive models,
such as cognitive architectures, convolutional neural networks,
and LLMs (102–105). Parsimonious models can help or harm
the scientific process depending on whether the biases they
introduce are aligned with scientific goals.
3.3.3. Guiding scientific experimentation. To the extent that they
are more likely to be misspecified (Sections 2.2 and 3.1.1),
parsimonious models can harm scientific experimentation by
pointing scientists in wrong directions. When we rely on mis-
specified models to guide new research, we expose the scientific
process to bias twice: First, when drawing inferences from the
misspecified model, and again when making decisions about
which research to pursue next (106). Misspecified models risk
guiding future research in unproductive directions (107–109), in
ways that can be difficult to detect (110). Dubova et al. (110)
examine the success of scientists in coming up with a good
model of the world by conducting experiments that are either
informed by their current model of the world or are simply
chosen at random. In this computational study, the community
of scientists is set up to conduct targeted experiments that either
aim to distinguish between competing models of the world,
falsify or confirm them, or to use the scientists’ knowledge in
some other way. Importantly, the scientists’ models of the world
were misspecified and were subject to incremental improve-
ment. Across all the tested contexts, conducting experiments
at random resulted in learning more informative and predictive
models of the world than conducting experiments informed by
such misspecified accounts (see also ref. 111). Parsimonious
models that are deliberately simplified approximations of the
world are often misspecified, and so could similarly misguide
scientific experimentation.

3.4. Resource Efficiency. Models that require fewer resources
(e.g., memory and time) for training and use can be more
easily developed, shared, and used by researchers without
access to expensive hardware. Parsimony has traditionally
helped scientists develop resource-efficient models. However,
recent advancements reveal that complex models can effectively
approximate less resource-efficient parsimonious models, indi-
cating that strictly adhering to parsimony may harm resource
efficiency. Below, we examine resource efficiency in both model
training and usage contexts.
3.4.1. Training. Parsimonious models can be easier to train. For
example, the time it takes to infer the best model can grow
polynomially or even exponentially with the number of flexible
parameters or data points. Moreover, linear algebra and regu-
larization operations often require more energy and memory as
the number of parameters increases. As a consequence, training
large neural network models (e.g., LLMs) has been shown
to impose a large environmental cost (112, 113). Moreover,
parsimonious models with well-studied parametric forms often
admit analytical solutions, which can save substantial resources
for optimization. For example, there are analytical solutions that
enable fast fitting of drift diffusion models (114), as compared to
more complex alternatives that may better explain the data but
cannot be as widely used because of the optimization challenges
[e.g., leaky competing accumulator: (115)]. Therefore, parsimony
can guide the development of models that are easier to train.
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Recent work has blurred the association between a model’s
parsimony and the resources it needs to be trained. Sometimes,
making a model less parsimonious (e.g., by increasing its number
of parameters) can make it more computationally tractable. For
example, training models with more parameters than data can
be faster and more successful than training models with fewer
flexible parameters (116–119). Finally, there are now complex
machine learning models being used in place of more parsimo-
nious models that are too slow or even intractable to train (120,
121). For example, Sukys et al. (122) developed a neural network
model to predict the solutions for the Chemical Master Equation
across a range of parameters, thus overcoming the need to use
expensive simulation and approximation techniques to solve
the model for a particular chemical problem at hand. While
parsimony has traditionally been associated with training effi-
ciency, new techniques show that, in some cases, more complex
models can be easier to train and serve as faster alternatives to
computationally demanding, parsimonious models.
3.4.2. Usage. Parsimony can enhance the resource efficiency of
a model’s usage to the extent that a specific form of parsimony
aligns with the tools we use to store and query models. If we
measure parsimony via the number of components, and if com-
putational or memory resources are dominated by terms related
to the dimensionality of these components, then enforcing par-
simony by components can help reduce computational require-
ments for storing and querying the model. For example, models
using fewer variables typically need less memory to be stored
and fewer computational operations (time and memory) to
make predictions. For instance, using the recency heuristic which
relies only on the latest data point to predict next week’s flu-
related doctor visits is very resource efficient (123). Conversely,
querying very large models with many components can be costly
and slow (112). Therefore, parsimony often aligns well with the
computational resources we use to store and query models.

However, models are often inefficient to use for reasons
unrelated to parsimony, leading to instances where using more
parsimonious models can be more costly than their com-
plex counterparts. Recently, scientists have started developing
complex models that emulate the functionality of inefficient
parsimonious models. Although these emulators are expensive
to train, they can be queried more efficiently than the parsimo-
nious models they approximate (e.g., see refs. 124 and 125).
Additionally, the structure of some complex models inherently
enhances their efficiency. For example, complex yet sparse
neural models can be efficiently queried by activating only a
selectively small, parsimonious subnetwork for any given input.
Similarly, gating mechanisms in large neural networks can mask
or remove weights from certain subparts based on the context,
making it efficient to query even very complex models. Thus, in
some cases, parsimonious models can be less efficient to use
than their more complex alternatives.

3.5. Suitability for Small and Noisy Datasets. So far, we have
discussed parsimony as a proxy for achieving certain model
properties. However, parsimony has also been viewed as an
unavoidable consequence of working with limited data. Some
sciences almost always study phenomena that are only in-
directly connected to empirical measurements. For instance,
biological studies often aim to capture the multistep cascade
process between the measured inputs and outputs. With each
additional model component that is only loosely connected to
empirical measurements, a model becomes harder to train,
and the estimates of its parameters become less robust and
less interpretable (126). Other limitations of data include the
small number of observations or high amount of noise in them.
For example, in psychological studies, people tend to differ in
many unobserved and unmodeled factors, often only allowing
the detection of high-level patterns, such as linear trends. This

does not imply that relationships in data are inherently linear;
rather, it reflects the fact that more intricate relationships
might be indiscernible with the finite and qualitatively limited
data at hand. The overarching theme in these examples is
that parsimony in modeling can emerge as a consequence
of acknowledging the boundaries of our knowledge and the
restrictions of our data. Here, we suggest that parsimony is not
a unique guide to models that are suitable for limited data.

Acknowledging the limitations of the data has traditionally
pushed scientists to simplify their models, especially when
carrying out more thorough experiments was not feasible.
However, embracing overly parsimonious models in these sit-
uations is not the only possibility. As mentioned in Section 3.1.2,
models that are more complex by constraints than needed to
perfectly fit both the regularities and the noise in the data
can achieve surprisingly high predictive accuracy. This means
that extremely complex by constraints models can be used to
extract reliable information from even a small number of ob-
servations. Moreover, acknowledging the fact that most causal
processes that models aim to capture are not directly observable
might motivate one to abandon the idea of converging on
one “true” model with empirically unobservable components
and to adopt a more pluralistic modeling approach (127–129).
Here, the unobservable processes can instead be modeled
by considering all the available supported accounts of the
latent process resulting in a complex ensemble of models. For
example, in climate science, forecasts are made by combining
the predictions of multiple climate models proposed by different
groups of scientists (22, 130). This approach integrates dozens of
different structural models, each of which contributes a unique
perspective on the Earth’s climate system, rather than requiring
a conclusive selection of one account. Although such ensembles
have so far been primarily employed for prediction, exploring
the role they can play in improving scientific understanding of
phenomena remains a promising direction for future research.

3.6. Alignment with Assumptions About Target Phenomena.
Scientists often use and interpret their models as reflections of
the nature of their phenomena. If the phenomena themselves
are believed to be simple, it could constitute an additional reason
to use parsimonious models. For example, if epidemiologists
believe that the dynamics relevant for virus transmission are
self-contained (few parameters are needed to represent few
relevant causal variables) and stable across contexts (few
parameters are needed to account for little heterogeneity
across contexts), this would motivate the use of parsimonious
models to capture these phenomena. Whether constructing
parsimonious models aligns with one’s beliefs about the
nature of the target phenomenon varies between fields and
individuals. Here, we suggest that the assumptions that inform
the specification of parsimonious models do not always align
with scientists’ beliefs about what they study.

Parsimonious-by-components models are more consistent
with the idea that only a few components are necessary when de-
scribing target phenomena. The history of the natural sciences is
full of examples justifying the use of more parsimonious models
by referring to the nature of the world. For example, Copernicus
defended the heliocentric model by appealing to a parsimonious
world: “We thus follow Nature, who producing nothing in vain
or superfluous, often prefers to endow one cause with many
effects” (131). Similar arguments also appear in contemporary
sciences. For instance, complex intelligent behavior is often
thought of as guided by simple heuristics (132). Contemporary
commitments to parsimony of phenomena are often implicitly
reflected in how models are used and what inferences they li-
cense. For example, in experimental psychology and in medicine
it is the norm to take the null hypothesis seriously (e.g., assuming
that an untested drug has no effect), often because of the belief
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that a particular manipulation or treatment is more likely to
result in no effect (133). In these ways, parsimony helps scientists
to develop models that are better aligned with their beliefs about
the nature of their phenomena.

Although parsimony sometimes aligns with discipline-specific
assumptions about phenomena, there are cases where these
assumptions are instead more consistent with more complex
models. The spatial and temporal complexity of phenomena is
being increasingly recognized across disciplines, including social
and political sciences, psychology, neuroscience, biology, and
physics. For example, psychological phenomena are commonly
conceptualized as a result of a complex interaction of many
contextual, often unobserved and unmodeled, factors (59). In
such cases, a bias toward more parsimonious models, which are
likely to omit these contextual variables, is misaligned with the
appreciation of the importance of context in the discipline (58).

Viewing the target phenomena as either parsimonious or
complex is not the only option. Some scientists believe that the
true nature of the system of study is more complex, even if the
data only allow them to discern simple patterns. For example, in
psychology, data often reveal parsimonious trends, like linear re-
lationships, even though most psychologists recognize that hu-
man psychology is far more intricate. Conversely, other scientists
maintain that their system could be truly parsimonious, despite
observations that appear complex (134). For instance, natural
selection is often regarded as a parsimonious mechanism
responsible for producing extraordinarily complex and diverse
outcomes (135). Similarly, the premise of Chomskyan linguistics
is that one can explain how the richness of human languages
emerges through a parsimonious set of rules (2) (see ref. 136 for
discussion of different levels of analysis). Thus, scientists often
believe that parsimony and complexity may coexist in nature.
Extending this idea to scientific methodology, we now turn to
our conclusion on how parsimony and complexity can serve as
complementary principles in science.

4. Conclusion: Complexity and Parsimony as
Complementary Principles for Scientific
Discovery

“Less is more”–ancient Greek proverb
“The more the merrier”–English proverb

In this paper, we discuss the relationship between parsimony
and some desirable model characteristics. We articulate the
circumstances under which parsimony could successfully lead
a scientist toward models that are more predictively accu-
rate, interpretable, useful in guiding future research, resource
efficient, suitable for working with noisy and small datasets,
and aligned with a field’s beliefs about the structure of their
target phenomena. While parsimony often correlates with these
desirable attributes of scientific models, this relationship is not
universal and it depends on the specific interpretation of par-
simony and on the modeling context (137). Models of different
complexity instantiate different trade-offs, and so are best suited
for different aims, contexts, and stages of scientific inquiry (138).
Therefore, a universal preference for more parsimonious mod-
els can hinder the achievement of modeling goals. We suggest
that preference for parsimonious and complex models can serve
as complementary principles in the scientific process (88, 139).

Contemporary modeling practices increasingly call for a revi-
sion of model parsimony as a standalone property of a model.
Rather, to serve as a useful proxy for achieving various modeling
goals, parsimony might have to include the modeling context,
such as training procedures and other elements of the modeling
process. For example, while modern machine learning models
might seem overwhelmingly complex in their number of free
parameters, it is often the fitting procedures—such as gradient

descent—that identify uniquely effective configurations of these
parameters (60, 61). Thus, it might prove more useful to think
about the entire modeling process, rather than just the model
itself, as being parsimonious or complex (i.e., characterized by a
certain number of constraints or components).

Parsimonious and complex models can be combined in
scientific practice, often playing different roles at different stages
of the scientific process. Traditionally, new ideas are introduced
with models that are deliberately simple; application to data
then leads to the discovery of new phenomena, which requires
that the original models be adjusted and expanded in particular
ways (13). One example of this is the gradual development
of sequential sampling models for speeded response time
tasks in cognitive psychology. The initial model (e.g., ref. 140)
was relatively bare-bones, and it was gradually expanded by
adding new processes (and associated parameters; e.g., ref.
141). Because the simple model could have been expanded
in numerous ways, it would have been mere guesswork to
propose any particular expansion before the availability of data
to provide the proper guidance.

Recent advances reviewed in this paper point to the promise
of an alternative strategy—namely, progressing from more
complex to simpler models. Use of more complex models,
particularly in initial stages of scientific exploration when prior
knowledge is limited, can be instrumental in uncovering un-
derlying structure in the data. Complex models with many
flexible components afford more agnostic learning, reducing
the risk of imposing incorrect assumptions on the data and
instead learning as much as possible from the data itself. Once
we have a successful complex model capturing the structure
of the data, this model can be effectively compressed into a
more parsimonious account for future use—for example, for
gaining higher-level insight into the important aspects of the
phenomena that were captured by the complex model. This
can be achieved by such methods as distilled learning and
sparse approximators (142, 143). These techniques demonstrate
the feasibility of distilling trained complex models into more
parsimonious, but equally accurate counterparts, while learning
these parsimonious models directly from the data results in
accounts that are less capable of capturing useful structure
in the data (144–147). Here, it is learning a more complex
model first that facilitates the discovery of a useful parsimonious
model, presenting an exciting avenue for the multistage process
of developing scientific models by starting with more complex
models to learn from the data and then converting them into
more parsimonious accounts for future use. In a recent applica-
tion of this multistage modeling approach, psychologists used a
complex machine learning model to fit the structure in the Moral
Machine dataset comprising roughly 40 million moral decisions
by human participants (148). This complex model was then used
to refine more parsimonious and theoretically grounded models
of moral judgment, leading to clarification of psychological di-
mensions that contribute to human moral decisions. This study
presents a successful example of how starting with complex
models to uncover rich structure in the data and then using
them to inform more parsimonious accounts could enhance our
understanding of the scientific phenomena of interest.

The appropriate role for parsimony in the modeling process
depends not only on the modeler’s goals and context, but on
science itself: Advances in statistics, computer science, cognitive
science, and other fields continue to both refine and challenge
our understanding of when, how, and in what ways parsimony
facilitates or hinders scientific progress. Despite centuries of re-
search since Ockham’s famous invocation of the principle of par-
simony 700 y ago, this paper has highlighted that there remain
many open questions and unexplored nuances of the principle
of parsimony. We expect the principle of parsimony to both
facilitate the evolution of and evolve alongside science itself.
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underlying this work.
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