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ABSTRACT
The Internet has enabled learning at scale, from Massive Open
Online Courses (MOOCs) to Wikipedia. But online learners
may become passive, instead of actively constructing knowl-
edge and revising their beliefs in light of new facts. Instructors
cannot directly diagnose thousands of learners’ misconcep-
tions and provide remedial tutoring. This paper investigates
how instructors can prompt learners to reflect on facts that are
anomalies with respect to their existing misconceptions, and
how to choose these anomalies and prompts to guide learners
to revise incorrect beliefs without any feedback. We conducted
two randomized experiments with online crowd workers learn-
ing statistics. Results show that prompts to explain why these
anomalies are true drive revision towards correct beliefs. But
prompts to simply articulate thoughts about anomalies have
no effect on learning. Furthermore, we find that explaining
multiple anomalies is more effective than explaining only one,
but the anomalies should rule out multiple misconceptions
simultaneously.
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INTRODUCTION
The Internet provides tremendous opportunities for learning,
from Massive Open Online Courses (MOOCs) to Wikipedia.
However, much of this learning occurs without access to a
teacher or the corrective feedback a teacher would typically
provide. In the absence of catered instruction and feedback,
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learners may be less likely to engage in belief revision, espe-
cially when doing so requires overcoming existing miscon-
ceptions. For example, facts that contradict existing beliefs
could be ignored or simply memorized [5], without learn-
ers truly grappling with the implications and moving away
from misconceptions towards more accurate understanding.
As the number of learners grows, it becomes impossible for
instructors to diagnose individual students’ incorrect beliefs
and dynamically design activities to correct them. In light of
these challenges, how can we design online environments to
ensure large-scale active learning and belief revision without
instructors’ real-time involvement?

Existing approaches try to leverage peers for discussion [16] or
assessment [10], and intelligent tutoring systems for feedback
[13]. For instance, some present an automatic hinting interface
[9], use Natural Language Processing to coach answering
domain-specific questions [6], or provide feedback on the
correctness of multiple choice explanations in an intelligent
tutoring system [2]. However, it is challenging to scale the
success of these intelligent tutoring technologies to the many
new online lessons and problems that are rapidly emerging.

Another approach, which has received less attention, is to
guide learners to engage in belief revision themselves. This
approach faces an obvious challenge: because learners are by
definition ignorant of what they are trying to learn, they can’t
replace the role of an informed instructor providing accurate
feedback. On the other hand, there’s evidence that engaging
in reflective cognitive processes, such as explanation, can help
learners identify gaps and inaccuracies in their current beliefs
and guide them to better alternatives, even in the absence
of feedback [4, 11, 12]. Appropriate reflective prompts or
"Socratic questions" may thus achieve some of the benefits of
interactive instruction, while being broadly applicable across
domains, easy to implement, and easy to scale.

Designing successful reflective prompts requires an under-
standing of how people learn. How can the cognitive processes
for belief revision be elicited by the right interface features
– such as reflective questions – and the right content – like
particular facts or examples presented for reflection [14]? Ac-
cordingly, this paper tries to help instructors by investigating
the following questions: Which reflective prompts most ef-
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Figure 1. Screenshot of what learners saw for each ranked pair and
accompanying Reflection Prompt. Only one prompt was shown, via ran-
dom assignment to the Explain or the Write Thoughts Reflection Prompt.

fectively promote belief revision? And towards what content
should reflective prompts be directed? Specifically, to what
extent should learners be prompted to engage with anomalies
– material that challenges prevalent misconceptions?

RELATED WORK
Online environments frequently provide explanations of con-
cepts to learners through lecture videos. However, research in
education emphasizes the pedagogical value of using technol-
ogy to prompt learners to generate their own self –explanations
of what concepts or facts mean in their own words [1, 4]. Of
particular relevance to belief revision is the finding that ex-
plaining why a fact is true does not merely boost attention
or motivation, but drives people to interpret what they are
explaining as one instance of a broader pattern [18, 19, 20, 8].

In light of this finding, it may be especially effective for learn-
ers to generate explanations for anomalies–facts that are in-
consistent with their prior beliefs. Explaining anomalies could
potentially overturn prior misconceptions and direct learners
to alternatives that render the anomaly intelligible. For exam-
ple, explaining why 2 is a prime number could conflict with
a learner’s misconception (that all primes are odd) and help
guide the learner to a more accurate principle that accounts for
the anomaly (that primes have exactly two unique divisors).

Despite the potential for anomalies to revise beliefs, educa-
tion research has revealed that merely presenting people with
anomalies frequently fails to elicit cognitive processes that
change entrenched beliefs [5]. People need to process the
anomalies appropriately [7, 3], and prompts to explain the
anomalies could be an effective way to elicit the requisite
processing.

STUDIES: DESIGNING PROMPTS & ANOMALIES
Our goal was to guide online learners to revise prior mis-
conceptions, even when feedback from an instructor was un-
available. The educational topic was learning how to com-

Type of
Information Sarah Tom Ranking Rule Use of Rule Higher

Ranked

Personal
Score 85% 69% Higher Score 85>69 Sarah

Class
Average 79% 65% Greater Distance

from Average
(85-79)>
(69-65) Sarah

Class
Maximum 90% 87% Closer to

Maximum
(90-85)<
(87-69) Sarah

Class
Deviation 8% 3% More deviations

Above Average
(85-79)/8<
(69-65)/3 Tom

Figure 2. The misconceptions (Higher Score, Greater Distance from Av-
erage, Closer to Maximum) and correct concept (More deviations above
the average) that underlie ranking of pairs of students.

pare samples from different populations [14, 8]. This task
requires understanding statistical variability, which is central
to many everyday decisions [15, 17]. Our design of prompts
and anomalies was intended to be technologically easy for
instructors to implement, yet psychologically potent in revis-
ing beliefs. Two experiments1 investigated which reflective
prompts would be effective, and how to choose the number
and distribution of anomalies targeted by the prompts.

Methods

Materials: Misconceptions & Anomalies in Statistics Problems
The experiments had participants learn how a university com-
pared student grades that came from different courses. Partici-
pants reflected on observations like the ranking of the sample
pair of students in Figure 1. Sarah’s and Tom’s scores were
shown along with the respective class’s average, max, min,
and deviation, and a statement about who was ranked higher
by the university (Tom). Learning the correct ranking rule
required integrating statistical knowledge with observations.
Figure 2 shows how Sarah and Tom would be ranked by four
different rules for comparing samples from populations.

The "More deviations above the average" rule was the true
basis for the university’s ranking. In all five (six in Experiment
2) ranked pairs that participants saw, the higher-ranked student
was whoever was a greater number of deviations above the
average. This corresponds roughly to the higher standardized
normal or z-score.

Figure 2 also shows how Sarah would be expected to be ranked
higher, rather than Tom, according to three common miscon-
ceptions learners have about ranking [14]. For example, belief
in the "Higher Score" rule would give a higher rank to the
student with a higher score, without taking the course mean or
variability into account. These "misconceptions" each neglect
important statistical concepts captured by the "More deviations
above average," or z-score.

We define a ranked pair as an anomaly with respect to a mis-
conception about ranking, when the ranking contradicts what
an incorrect belief predicts. The Sarah–Tom pair in Figure
1 is therefore an anomaly with respect to each of the three
misconceptions.

1[18] is a non–archival and less extensive analysis and discussion
of this data. [22] is a non-archival report of an earlier version of
Experiment 1.
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Figure 3. Experiment 1: Accuracy Increase from pre- to post-test on
ranked pairs that pitted the correct rule "More deviations above the
average" against all three misconceptions. Error bars: +/- 1 standard
error of the mean, *: a statistically significant difference at the level of p
< 0.05, t-test.

Procedure
Before participants studied the ranked pairs, they completed
a Pre-Test by making predictions of who would be higher
ranked for four unranked pairs of students. Each student pair
was similar to the Sarah-Tom pair in that the correct "More
deviations above average" rule predicted the opposite ranking
(e.g., Tom) to all three misconceptions (e.g., Sarah).

Participants then studied the five (Expt. 1) or six (Expt. 2)
ranked pairs. Each ranked pair was onscreen for exactly two
minutes, so participants could not take more or less time.
Below the ranked pair was a Reflection Prompt and text box to
type into, as shown in Figure 1. Participants’ beliefs were then
measured by predicting rankings in a Post-Test. The Post-test
used four unranked pairs that were statistically isomorphic to
the Pre-Test, except for having different numbers and names.

We operationalize belief revision as the Pre- to Post- test in-
crease in accuracy. This measures the degree to which learners
are driven to believe in the correct rule over the misconcep-
tions, after reflecting on the ranked pairs. Pre- to Post- test
Accuracy Increase is the dependent variable in all graphs and
statistical tests.

Participants
We recruited 659 (Experiment 1) and 261 (Experiment 2)
participants on Amazon Mechanical Turk to do a 20-40 minute
research study on learning. Compensation was around $3.00–
$6.00 per hour. Our goal in using crowd workers was to
obtain a more representative online sample than undergraduate
laboratory participants, while enabling greater experimental
control and measurement of learning than with students taking
an online course.

Experimental Comparison of Prompts and Anomalies
Experiments 1 and 2 used between-subjects factorial designs
that independently manipulated multiple variables. To investi-
gate the design of reflection prompts to promote belief revision,
both experiments varied the kind of Reflection Prompt, ran-
domly assigning learners to receive an Explain vs. a Write
Thoughts prompt. Prior research suggests that prompt to ex-
plain should be especially potent [20]. The Write Thoughts
prompt was selected as a close comparison to explaining in
terms of effort and engagement, and was also matched in re-
quiring a verbal response. This manipulation allows us to
assess whether explanation prompts are especially effective
relative to generic prompts for explicit reflection.

Figure 4. Experiment 1: Accuracy Increase from pre- to post-test, as a
function of Reflection Prompts and Number of Anomalies. Error bars:
+/- 1 standard error of the mean, *: p < 0.05, t-test.

Instructors would also benefit from knowing how many anoma-
lies they need to present learners with. Of the five ranked
pairs in Experiment 1, learners were randomly assigned to
receive a different Number of Anomalies contradicting each
misconception. There was either One Anomaly (to each of the
three misconceptions) or Four Anomalies (to each of the three
misconceptions). Experiment 2 presented six ranked pairs,
randomly assigning learners to receive Two vs. Four Anoma-
lies. This allowed us to investigate how many anomalies are
needed to promote belief revision.

Given a fixed number of anomalies, it is important to know
how these should be distributed between observations. In Ex-
periment 1, any ranked pair that was anomalous with respect
to one misconception was anomalous with respect to all three
of them, like the example from Figure 2. We label this distri-
bution of anomalies as "overlapping." Experiment 2 included a
Distributed condition where anomalies were distributed among
the ranked pairs to maximize the average number of anoma-
lies per ranked pair. Figure 5 shows the precise differences
between the Overlapping and Distributed allocation of anoma-
lies. With Distributed anomalies, every observation provides
evidence against some misconception, while the Overlapping
condition has ranked pairs consistent with all misconceptions.
An observation that challenges a single misconception leaves
room for learners to shift towards an alternative misconception,
rather than towards the correct ranking rule [21].

Results

Experiment 1
Accuracy Increase in Experiment 1 is shown in Figure 3.
We conducted a 2 (Reflection Prompt: Explain vs. Write
Thoughts) x 2 (Number of anomalies: 1 vs. 4) ANOVA on Ac-
curacy Increase from Pre- to Post-test. There was a significant
overall effect of Reflection Prompt, with greater belief revi-
sion from Explain than Write Thoughts prompts (F(1, 659)
=13.23, p < 0.01). Belief revision was also increased by a
greater Number of Anomalies (F(1, 659) = 24.53, p < 0.01).

However, explaining was only beneficial when sufficiently
many anomalies were being explained (Figure 4). There
was an interaction between Reflection Prompt and Number
of anomalies (F(1, 659) = 8.20, p < 0.01). Prompts to Ex-
plain promoted belief revision when the targets included 4
anomalies (t(260) = 4.07, p < 0.01), but had no effect when
the targets only included 1 anomalous fact (t(367) = 0.62, p =
0.54).
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Experiment 2
2 out of 6 anomalies condition

Overlapping Condition Distributed Condition
1 2 3 4 5 6 1 2 3 4 5 6

R
an

ki
ng

R
ul

e

Higher
Score

7 7 3 3 3 3 7 7 3 3 3 3

Greater Distance
from Average

7 7 3 3 3 3 3 3 7 7 3 3

Closer to
Maximum

7 7 3 3 3 3 3 3 3 3 7 7

More Deviations
above Average

3 3 3 3 3 3 3 3 3 3 3 3

4 out of 6 anomalies condition

Overlapping Condition Distributed Condition
1 2 3 4 5 6 1 2 3 4 5 6

Higher
Score

7 7 7 7 3 3 7 7 7 7 3 3

Greater Distance
from Average

7 7 7 7 3 3 3 3 7 7 7 7

Closer to
Maximum

7 7 7 7 3 3 7 7 7 7 3 3

More Deviations
above Average

3 3 3 3 3 3 3 3 3 3 3 3

Figure 5. An illustration of how the 6 ranked pairs in Experiment 2 had
different Overlapping versus Distributed distributions of anomalous in-
formation. The amount of anomalous information was held constant in
the six ranked pairs, with 2 versus 4 instances being anomalous with re-
spect to each misconception. The Overlapping condition concentrates
anomalous facts so that every ranked pair is either anomalous or consis-
tent with respect to all three misconceptions. The Distributed Condition
distributes anomalous facts to maximize the number of ranked pairs that
are anomalies to one or more misconceptions.

Experiment 2
To analyze the data from Experiment 2, we conducted a 2
(Reflection Prompt: Explain vs. Write Thoughts) x 2 (Number
of anomalies: 2 vs. 4) x 2 (Distribution of anomalies: Overlap-
ping vs. Distributed) ANOVA on Accuracy Increase from Pre-
to Post-test. This analysis revealed a significant interaction be-
tween Reflection Prompt and Distribution of anomalies (F(1,
259) = 6.11, p < 0.05). To visually represent this interaction,
Figure 6 presents Accuracy Increase as a function of these two
factors. When the distribution of anomalies was Overlapping,
as in Experiment 1, prompts to Explain promoted significantly
greater belief revision than prompts to Write Thoughts (t(127)
= 2.20, p < 0.05). However, when anomalies were Distributed,
the relative benefits of engaging in explanation disappeared
(t(129) = 1.32, p > 0.19).2

Summary of Key Results
Experiments 1 and 2 asked three questions. First, which reflec-
tion prompts most effectively promote learning? The answer
is that not all reflective prompts are equal: prompts to explain
anomalies were significantly more effective than prompts to
write thoughts, even though both tasks were similarly demand-
ing and required a verbal response.

Second, how many anomalies should be explained? The find-
ings suggest that explaining a single anomaly is insufficient. In
Experiment 1, the benefits of explanation were only observed
when 4 anomalies were explained, while in Experiment 2, the

2The omnibus ANOVA also revealed a main effect of Number of
anomalies, with greater learning when more anomalies were present,
F(1, 259) = 8.20, p < 0.01. This factor did not interact with Reflection
Prompt (as it did in Experiment 1), potentially due to the shift from 1
vs. 4 anomalies (in Experiment 1) to 2 vs. 4 (in Experiment 2).

Figure 6. Experiment 2: Accuracy Increase from pre-test to post-test, as
a function of Reflection Prompts and Distribution of Anomalies. Error
bars: +/- 1 standard error of the mean, *: p < 0.05, t-test.

benefits of explanation were not significantly different across
2 vs. 4.

Third, how should anomalies be distributed? The findings
suggest that anomalies are more effective in promoting learn-
ing when they are "overlapping" in the sense that they simul-
taneously rule out multiple misconceptions. In fact, when
anomalies were distributed (in Experiment 2), the benefits
of explanation vanished. This is likely because participants
were able to explain the anomalies by appeal to alternative
misconceptions [21], and therefore lacked unique guidance
towards the correct ranking rule.

In sum, the experiments showed how to design reflective
prompts in online lessons to guide learners to revise their mis-
conceptions towards accurate beliefs, even in the absence of
instructor feedback. However, the effectiveness of the prompts
depends both on the prompt itself and on its target. Prompts
to explain multiple anomalies were most effective, and it mat-
tered that the anomalies simultaneously rule out multiple po-
tential misconceptions.

DISCUSSION & LIMITATIONS
There are limitations to the current work. It could be hard
or time-consuming for instructors to identify learners’ mis-
conceptions and generate corresponding anomalies; here we
benefited from prior research on misconceptions within our
content domain. Also, further studies are needed to see if
our results generalize to learning tasks with other materials
and other populations of online learners, who may differ from
Mechanical Turk workers in their goals and motivation. For
example, it would be interesting to investigate prompting users
to explain anomalous facts in informal learning materials like
Wikipedia pages.

Our work presents an example of how cognitive science theo-
ries can be used to experimentally identify scalable principles
for instructional design. A sophisticated understanding of how
people learn allowed us to formulate and rule out novel hy-
potheses about how to prompt learners so that they themselves
would actively revise their beliefs, even without instructor
feedback. With efficient technical implementation in a broad
range of online lessons and problems, these prompts can lever-
age and empower learners’ active engagement to promote
learning at scale.
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