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Much of our knowledge about the world is grounded 
in others’ testimony (Rabb et al., 2019). This requires 
distinctive sociocognitive mechanisms highly attuned 
to others’ expertise, social standing, and intentions 
(e.g., Harris et al., 2018; Mercier & Sperber, 2011). For 
example, sensitivity to the reliability of others’ testi-
mony emerges early in childhood (Langenhoff et al., 
2023), and both children and adults track who is likely 
to know what (Lutz & Keil, 2002; Wilkenfeld et  al., 
2016). However, we are increasingly called upon to 
make inferences about the world not from the testi-
mony of a few known informants, but from the aggre-
gated opinions of many unknown individuals: For 
example, we need to learn about the quality of products 
on online marketplaces through the aggregated reviews 
of previous customers (Hayes et al., 2021), and we need 
to learn about the popularity of electoral candidates 
through polls that aggregate the opinions of thousands 
(Stoetzer et al., 2024).

Decades of work in psychology (e.g., Kruglanski, 
2004), politics (e.g., Huckfeldt et al., 2004), and eco-
nomics (e.g., Golman et al., 2016) have shed light on 
the general problem of how people respond to others’ 
opinions. However, work on the more specific problem 

of how people draw inferences from aggregated opin-
ions offers conflicting results. When learning about 
novel issues from the aggregated opinions of a few 
correlated sources, people seem to overweight others’ 
opinions (Desai et  al., 2022; Enke & Zimmermann, 
2019; Yousif et  al., 2019). When drawing inferences 
about real-life controversies (e.g., climate change) from 
disagreeing millions, people seem to underweight others’ 
opinions (Oktar & Lombrozo, 2022; see also Hartman 
et al., 2022; Iyengar et al., 2019). In other cases, peo-
ple’s inferences seem to accord with Bayesian expecta-
tions (Orchinik et al., 2023; Orticio et al., 2022; Stoetzer 
et al., 2024).

Are people simply bad at drawing reliable inferences 
from aggregated opinion? Prior work fails to answer 
this question, as it has not experimentally isolated the 
inference process nor conducted formal model com-
parisons across opinion distributions to assess whether, 
when, and why people go wrong. We address this gap 
by proposing a Bayesian model of inference from 
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aggregated opinion and presenting three behavioral 
studies that isolate these inferences and compare them 
to the Bayesian model and to alternative formalizations 
from epistemology (Easwaran et al., 2016) and econom-
ics (Romeijn & Atkinson, 2011).

Formalizing Inference from Opinion: 
Bayes, Updating on the Credences of 
Others, Competence

Imagine learning about a poll of NX  strangers concerning 
some issue S—for example, whether the incumbent is the 
leading candidate in an election. For simplicity, we assume 
that we learn only whether these NX people think S is true 
or false (generating binary opinion samples). We will 
denote these samples x x xN1 2, ,..., —with a total of X1 
thinking that S is true, and X0 thinking it is false—and call 
the full vector of samples X. Below, we introduce three 
models that generate inferences from such data (see Sup-
plemental Materials A in the Supplemental Material avail-
able online for mathematical details and our Open Science 
Framework repository for model implementations).

Bayesian analysis

Our goal is to use aggregated opinions, X , to infer the 
probability that statement S is true: P S( ). For simplicity, 
we will use θ to denote the value of P S( ). Bayesian infer-
ence combines prior beliefs about θ, denoted p( ),θ  with 
a likelihood function that connects observations of opin-
ions to inferences about θ, denoted P X( | )θ .1 With these 
two components, Bayes’ rule specifies that the optimal 
inference—that is, the posterior, p X( | )θ —is given by

 p X
P X p

P X p d
( | )

( | ) ( )

( | ) ( )
.θ

θ θ

θ θ θ
=

∫ 0
1

 (1)

To make predictions using the Bayesian model, we 
need to specify how opinions relate to truth and what 
people already know about S . If people treat informants 
as providing independent pieces of information and 
assume that the distribution of opinion corresponds to 
the probability with which S is true, the likelihood takes 
on a simple form called the binomial likelihood whereby 
P xi( | )= =1 θ θ and P xi( | ) ( )= = −0 1θ θ . These assump-
tions may be relaxed to capture more complex infer-
ences, as they are frequently violated in reality (see, 
e.g., Xie & Hayes, 2022, and Supplemental Materials A).

Combining the binomial likelihood with a uniform 
prior—that is, absent additional information, such that 
p( )θ = 1 for all θ—yields a beta distribution with the 
following mean (Laplace, 1774):
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In Experiments 1 and 2, we will use “Bayes” to cor-
respond to this update rule. We describe how we incor-
porate informative priors to this model in Experiment 
3. Intuitively, Bayes is sensitive to the proportion of 
opinions that support S, being a linear function  
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. Our Bayesian analysis 

thus justifies the use of a simple strategy—combining 
priors and proportions—and does not require people 
to explicitly apply Bayes’ rule or engage in complex 
probabilistic calculations. We return to this point in the 
General Discussion.

Updating on the credences of others

There are many alternative rules for drawing inferences 
from opinions. One such rule, termed UPCO (short for 
“updating on the credences of others”), is a multiplica-
tive combination of the opinions of every individual in 
a group (Easwaran et al., 2016). UPCO is a heuristic that 
mimics Bayesian inference in some cases and respects 
the results of Condorcet’s jury theorem (Condorcet, 
1785). It is given by
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Statement of Relevance

When judging the quality of products on online 
marketplaces or the popularity of political candi-
dates, we increasingly rely on the aggregated 
opinions of many others (in the form of likes, 
ratings, and polls). Despite the importance of the 
issue, how we learn from such aggregated opinion 
is unclear: Some studies suggest that people over-
weight aggregated opinions, whereas others pro-
pose that people underweight them. To reconcile 
these findings, we investigated inferences from 
aggregated opinion using three behavioral experi-
ments and computational models. Across these 
studies, we found that participants’ judgments 
were best predicted by an ideal model that justi-
fies a simple strategy for combining prior beliefs 
with the proportion of people who support a par-
ticular opinion. Our approach offers a route to 
reconciling past findings and clarifying the sources 
of harmful opinion dynamics.
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Intuitively, UPCO is sensitive to the absolute margin 
of opinion that supports S. For example, the margin in 
the case in which 15 people believe S is true and 5 
think it is false is 10. Thus, [15T, 5F] leads to a similar 
prediction to [110T, 100F]. Note that in the case of 
binary opinion, xi needs to be mapped onto a continu-
ous estimate; we found that small deviations from the 
midpoint fitted the data best (e.g., .51; see Supplemen-
tal Materials A).

Competence

Another recently proposed formalism aims to estimate 
the competence of informants (reflected in a reliability 
rate, r ) from the distribution of opinion itself and aims 
to use this estimate to inform predictions about S 
(Romeijn & Atkinson, 2011):

 P S X X
N

X X
r r drX X X( | , )

( ) !

! !
( ) .

.

1 0
1 0

0

51
11 0=

+
−∫  (4)

We call this algorithm Competence. Intuitively, Com-
petence interpolates between UPCO and Bayes: It is 
sensitive to both the margin and the proportion and 
converges quickly.

These models make convergent predictions for some 
opinion distributions (e.g., when a panel of people is 
split on an issue) and divergent predictions on others, 
with variation across pairs of models in which distribu-
tions maximally differentiate predictions (see Fig. 1).

Experiment 1: Comparing Models 
Through Discriminative Points

To empirically compare human inferences with the  
predictions of these models, we conducted three 
experiments. In our first experiment, participants made 
judgments about the truth of 18 unknown statements 
on the basis of others’ opinions in a game-show 
setting.

Method

Participants. Following a power analysis with pilot 
data (see Supplemental Materials E), we recruited 133 
adults (46 male, 84 female, 3 other; mean age = 34) on 
Prolific in exchange for monetary compensation ($1.00 
for a 5-min study). Participation across all studies was 
restricted to users currently residing in the United States 
with an approval rating of at least 98% on at least 100 
tasks. Repeat participation within and across studies and 
pilots was restricted using the Prolific platform. Seven-
teen participants were excluded from analyses on the 

basis of preregistered exclusion criteria (completing the 
experiment too quickly or failing a comprehension 
check). This study’s design, hypotheses, and key analyses 
were preregistered; see https://aspredicted.org/L3D_
G4Q. All three experiments were approved by the Princ-
eton University Institutional Review Board. This research 
complies with the Declaration of Helsinki (2023).

Materials and procedure. In this study, participants 
were asked to make a series of 18 truth judgments inte-
grating the conflicting opinions of varying panels of 
informants in a game show. It is important to note that 
participants drew inferences about propositions that 
were masked (e.g., participants read, “For this question, 
[NX] members of the audience were chosen as members 
of the jury,” but they were not told what the question in 
fact was); they formed their judgments purely on the 
basis of the distribution of others’ opinions.

Participants first read a description of the game show 
that specified how the jury was selected randomly from 
the audience and answered a basic comprehension 
check (see Supplemental Materials B for details). They 
then encountered 18 trials with the following measure 
(the variables in square brackets were replaced with 
trial-specific numbers):

For this question, [NX] members of the audience 
were chosen as members of ‘the jury.’ X1[ ] of them 
thought that the statement was ‘true,’ and X0[ ] 
thought that the statement was ‘false.’ How likely 
do you think it is that the correct answer was ‘true’?

Participants provided these judgments on a slider scale 
ranging from 0, completely impossible, to 100, definitely 
true.

Three aspects of this paradigm are worth noting for 
their role in controlling central features of inferences 
from aggregated opinion. First, the game-show setting 
provides us with an opportunity to designate partici-
pants’ goals in the task, decoupling inferences from moti-
vations. Second, we are able to specify the distribution, 
reliability, and interdependence of opinion that partici-
pants learn from, decoupling inferences from assump-
tions about informants. Finally, the use of masked 
propositions brackets the role of priors, allowing us to 
focus on the role of evidence from aggregated opinion 
(in Experiment 3, we reintroduce a role for priors). Vary-
ing these features experimentally enables systematic 
exploration of the large space of inferences from aggre-
gated opinion (see Almaatouq et al., 2022; Oktar, 2024). 
In our studies, we explored inferences when priors 
are weak (Experiments 1 and 2) and informative 
(Experiment 3), when informants are independent and 

https://aspredicted.org/L3D_G4Q
https://aspredicted.org/L3D_G4Q
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randomly sampled, and when the inference context is 
purely focused on accuracy.

We generated 18 trials in this paradigm that maxi-
mally discriminated between our three models. To 
choose the opinion distributions (e.g., 12 jury members 
voted true, 17 jury members voted false) used in these 
trials, we computed model predictions for every pos-
sible opinion distribution (for juries up to 100 mem-
bers). These models converge on some points and 
diverge on others (see Fig. 1). For example, when a 
large jury overwhelmingly votes “false,” all three models 
predict low probability of truth. Other cases (e.g., small 
split juries) are more likely to induce differing predic-
tions. We identified the opinion distribution that led to 
the most divergent predictions for each pair of models, 
which led to three maximally discriminative points (i.e., 
opinion distributions).

We then used these three key points to generate 15 
other points by sampling five additional opinion distri-
butions per model with the same predicted probabili-
ties. For instance, if the point [1, 11] most clearly 
distinguished UPCO from Bayes, and UPCO predicted 
.40 for that point, we would sample five other points 
in opinion space (e.g., [3, 13]) for which UPCO also 
predicted .40. Half of the trials were inverted (to have 
more judges voting “false” than “true”), and they were 
reverse scored in later analyses. After providing these 
18 judgments, participants answered demographic 
questions and were debriefed.

Results

We had three main predictions. On the basis of past 
work showing that people often approximate Bayesian 
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inferences (e.g., Griffiths & Tenenbaum, 2006), we first 
predicted that the Bayesian model’s estimates would be 
significantly correlated with mean participant judg-
ments across our 18 key points. Second, we predicted 
that the correlation between model and human judg-
ments would be strongest for the Bayesian model. 
Finally, beyond correlations at the population level, we 
also predicted that the Bayesian model would capture 
individual judgments better than the heuristic models. 
That is, we expected that the mean correlation across 
participants’ judgments and the predictions of the three 
models would be highest for Bayes. Our data support 
all three predictions (see Fig. 2).

In support of our first prediction, the Bayesian mod-
el’s predictions were highly correlated with participant 
judgments, r p= <. , .92 001 (Fig. 3). The heuristic models 
were more weakly correlated (for UPCO, r p= − =. , .08 75
; for Competence, r p= <. , .79 001). Partially in line with 
our second prediction, the difference in correlation 
coefficients was statistically significant for Bayes and 
UPCO t p= <( )4 51 001. , .  but not for Bayes and Compe-
tence t p= =( )1 35 18. , . .

We can also ask which model best predicts the judg-
ments of each individual participant. Conducting this 
exploratory analyses revealed that ~ 75% of participants 
were best captured by the Bayesian model in terms of 
correlations; in terms of deviations, the number is ~ 80%.  
The rest of the participants were split between UPCO 
and Competence, with Competence performing better 
for correlations than deviations (see Fig. S2 in the Sup-
plemental Material).

Discussion

The results of Experiment 1 suggest that Bayes is the 
best predictor of people’s judgments for stimuli that 
most strongly discriminate between our models. How-
ever, there are important limitations to this analysis.

First, though we sampled informative points, we 
sampled just a few (our 18 points comprise ~ .1 4% of 
the space of opinion distributions for juries up to 50 
members; see Fig. S3 in the Supplemental Material). A 
consequence of this sparse sampling is that it is hard 
to know the extent to which our results generalize—for 
instance, although Bayes performed well for our stimuli, 
it could fail to accurately characterize inferences in 
cases of moderate agreement.

Second, our analysis compared the three models 
against each other. Beyond finding the best model, 
however, our goal is to best characterize people’s infer-
ences, and it is possible that a combination of our 
models could outperform individual predictions. To 
conduct more sophisticated model comparisons, we 
need greater statistical power.

Experiment 2: Densely Sampling 
Opinion Space

In Experiment 2, we extended our prior findings by 
densely sampling opinion distributions for juries of up 
to 60 members. This allowed us to investigate model 
performance across the full space of opinion distribu-
tions and provided enough power to conduct fine-
grained comparisons of our models with ensembles.

Method

Participants. Following a power analysis with pilot 
data (see Supplemental Materials E), we recruited 458 
adults (204 male, 242 female, 12 other; mean age = 38 
years), as in Experiment 1, for a slightly longer study. 
Participants were paid $1.20 for a 6-min study. We 
excluded 108 participants from analyses on the basis of 
preregistered criteria (33 for completing the experiment 
too quickly and 72 for failing an attention check—though 
including these participants did not change conclusions). 
This study’s design, hypotheses, and analyses were pre-
registered; see https://aspredicted.org/DKH_CWM.

Materials and procedure. Participants completed the 
same task as in Experiment 1—providing inferences 
about statements purely on the basis of the opinions of a 
jury, as participants were not shown the statements 
themselves.

Instead of rating 18 key points, however, they were 
randomly assigned 20 of 225 possible stimuli. Each of 
the 20 stimuli corresponded to a particular arrangement 
of the jury in the game show, from a split two-person 
jury to a split 58-person jury (i.e., 29 think it is false, 
29 think it is true). The 225 stimuli were densely sam-
pled to cover a quarter of all points from [1, 1] to [29, 
29] in a square grid—alternately skipping a point on 
each jury (e.g., the first four points are [1, 1], [1, 3], [3, 
1], [3, 3]; see Supplemental Fig. S4).

Results

Our data in this study show even stronger concordance 
between participants’ judgments and the predictions of 
the three models (see Fig. 4). That the correlations in 
this study are much higher should not be surprising: 
We picked 18 highly discriminative points in Experi-
ment 1, but here we also included easier points on 
which models agree. This reduces the power to dif-
ferentiate across our models from correlations.

Importantly, this richer data set enabled us to inves-
tigate the relationship between participants’ judgments 
and the structure of model predictions in much finer 
detail than we could observe through correlations. We 

https://aspredicted.org/DKH_CWM


1015

a b

St
ep

 1
: S

am
pl

e 
po

in
ts

 th
at

 m
ax

im
al

ly
di
ffe

re
nt

ia
te

 m
od

el
 p

re
di

ct
io

ns
.

X 1 =
 1

2
X 0 =

 1
7

S 
is

 T
ru

e
S 

is
 F

al
se

St
ep

 2
: P

ar
tic

ip
an

ts
 ju

dg
e 

po
in

ts
 in

 a
ga

m
e-

sh
ow

 s
et

tin
g 

w
ith

 s
pl

it 
ju

rie
s.

Number Voting
True (X1)

Nu
m

be
r V

ot
in

g
Fa

ls
e 

(X
0)

UP
CO

Ba
ye

s
Co

m
pe

te
nc

e

Density

Pr
ob

ab
ili

ty

c d

%
42

42
42

42
42

42
X 1

12
20

28
33

41
36

X 0
17

28
39

46
50

57
29

48
67

79
86

98

8
19

25
29

32
34

1
3

5
7

11
9

11
13

15
17

19
21

12
14

20
24

28
32

13
32

35
37

38
39

1
11

16
2 2

33
29

7
23

30
38

47
52

8
34

46
60

76
85

N X

Ho
w

 L
ik

el
y 

Do
 Y

ou
 T

hi
nk

 it
 is

 th
at

 
th

e 
Co

rr
ec

t A
ns

w
er

 w
as

 “
Tr

ue
”?

Co
m

pl
et

el
y

Im
po

ss
ib

le
Eq

ua
lly

 L
ik

el
y

to
 b

e
Tr

ue
 o

r F
al

se
 

De
fin

ite
ly

Tr
ue

0
50

30
20

10
40

60
80

70
90

10
0

26

Pa
rti

ci
pa

nt
s

Ba
ye

s

UP
CO

Co
m

pe
te

nc
e

02040 02040 02040 02040

Pa
ne

l O
pi

ni
on

 D
is

tri
bu

tio
n

Probability Estimates (in %)

F
ig

. 2
. 

C
o
m

p
ar

is
o
n
 o

f 
m

o
d
el

 p
re

d
ic

ti
o
n
s 

an
d
 m

ea
n
 p

ar
ti
ci

p
an

t 
ju

d
gm

en
ts

 i
n
 E

xp
er

im
en

t 
1.

 I
n
 (

a)
 w

e 
d
ep

ic
t 
th

e 
st

im
u
lu

s-
se

le
ct

io
n
 p

ro
ce

d
u
re

. 
Fo

r 
ea

ch
 p

ai
r 

o
f 
m

o
d
el

s,
 w

e 
ca

l-
cu

la
te

d
 t
h
e 

o
p
in

io
n
 d

is
tr

ib
u
ti
o
n
 (

e.
g.

, 
12

 ju
ry

 m
em

b
er

s 
vo

te
d
 t
ru

e,
 1

7 
ju

ry
 m

em
b
er

s 
vo

te
d
 f
al

se
) 

th
at

 l
ed

 t
o
 t
h
e 

m
o
st

 d
iv

er
ge

n
t 
p
re

d
ic

ti
o
n
s,

 a
n
d
 w

e 
u
se

d
 t
h
es

e 
th

re
e 

ke
y 

p
o
in

ts
 

to
 s

am
p
le

 t
h
e 

re
m

ai
n
in

g 
15

 p
o
in

ts
. 
In

 (
b
) 

is
 s

h
o
w

n
 o

u
r 

ex
p
er

im
en

ta
l 
ta

sk
. 
P
ar

ti
ci

p
an

ts
 w

er
e 

to
ld

 t
h
at

 r
an

d
o
m

ly
 c

h
o
se

n
 j
u
ri
es

 o
f 

2 
to

 1
00

 m
em

b
er

s 
ev

al
u
at

ed
 t
ri
vi

a 
st

at
em

en
ts

 
an

d
 r

ea
ch

ed
 d

iv
er

gi
n
g 

co
n
cl

u
si

o
n
s—

w
it
h
 o

p
in

io
n
 d

is
tr

ib
u
ti
o
n
s 

m
at

ch
in

g 
th

e 
st

im
u
li 

d
es

cr
ib

ed
 i
n
 (

a)
—

an
d
 m

ad
e 

in
fe

re
n
ce

s 
ab

o
u
t 

th
e 

tr
u
th

 o
f 

th
es

e 
st

at
em

en
ts

. 
T
h
es

e 
p
o
in

ts
 

ra
n
ge

d
 f
ro

m
 ju

ri
es

 o
f 
8 

to
 9

8 
m

em
b
er

s.
 M

o
d
el

 p
re

d
ic

ti
o
n
s 

ar
e 

sh
o
w

n
 i
n
 (

c)
, w

h
er

e 
B

ay
es

 c
o
rr

es
p
o
n
d
s 

to
 t
h
e 

b
in

o
m

ia
l 
p
o
st

er
io

r 
m

ea
n
, a

n
d
 a

 p
lo

t 
o
f 
m

ea
n
 p

ar
ti
ci

p
an

t 
ju

d
gm

en
ts

 
ac

ro
ss

 p
o
in

ts
 i
s 

sh
o
w

n
 i
n
 (

d
);

 t
h
e 

h
o
ri
zo

n
ta

l 
ax

is
 s

h
o
w

s 
o
p
in

io
n
 d

is
tr

ib
u
ti
o
n
s,

 w
it
h
 t
h
e 

to
p
 r
o
w

 i
n
d
ic

at
in

g 
th

e 
p
er

ce
n
ta

ge
 v

o
ti
n
g 

tr
u
e 

(%
),
 t
h
e 

se
co

n
d
 r
o
w

 i
n
d
ic

at
in

g 
th

e 
n
u
m

b
er

 
vo

ti
n
g 

tr
u
e 

(X
1)

, 
th

e 
th

ir
d
 r

o
w

 i
n
d
ic

at
in

g 
th

e 
n
u
m

b
er

 v
o
ti
n
g 

fa
ls

e 
(X

0)
, 
an

d
 t
h
e 

la
st

 r
o
w

 s
h
o
w

in
g 

th
e 

to
ta

l 
n
u
m

b
er

 o
f 
ju

d
ge

s 
(N

X
);

 e
rr

o
r 

b
ar

s 
sh

o
w

 b
o
o
ts

tr
ap

p
ed

 9
5%

 c
o
n
fi
d
en

ce
 

in
te

rv
al

s.
 W

e 
fo

u
n
d
 s

tr
o
n
ge

r 
ev

id
en

ce
 a

t 
th

e 
le

ve
l 

o
f 

in
d
iv

id
u
al

 p
ar

ti
ci

p
an

ts
: 

M
ea

n
 c

o
rr

el
at

io
n
s 

b
et

w
ee

n
 e

ac
h
 i

n
d
iv

id
u
al

 p
ar

ti
ci

p
an

t’s
 j
u
d
gm

en
ts

 a
n
d
 m

o
d
el

 p
re

d
ic

ti
o
n
s 

w
er

e 
si

gn
if
ic

an
tl
y 

h
ig

h
er

 f
o
r 

B
ay

es
 t

h
an

 f
o
r 

u
p
d
at

in
g 

o
n
 t

h
e 

cr
ed

en
ce

s 
o
f 

o
th

er
s 

(U
P
C
O

)—
t

p
(

)
.

,
.

13
2

13
68

00
1

=
<

—
an

d
 f

o
r 

B
ay

es
 t

h
an

 f
o
r 

C
o
m

p
et

en
ce

—
t

p
(

)
.

,
.

13
2

4
19

00
1

=
<

—
as

 
re

ve
al

ed
 b

y 
p
ai

re
d
 t

-t
es

ts
 o

f 
th

e 
co

rr
el

at
io

n
 c

o
ef

fi
ci

en
ts

 (
se

e 
Fi

g.
 3

).
 C

o
m

p
ar

in
g 

ab
so

lu
te

 d
if
fe

re
n
ce

s 
b
et

w
ee

n
 p

re
d
ic

ti
o
n
s 

an
d
 j

u
d
gm

en
ts

 s
u
p
p
o
rt

s 
si

m
ila

r 
co

n
cl

u
si

o
n
s 

(s
ee

 
Su

p
p
le

m
en

ta
l 
M

at
er

ia
ls

 C
).
 T

 =
 t
ru

e;
 F

 =
 f

al
se

; 
U

P
C
O

 =
 u

p
d
at

in
g 

o
n
 t
h
e 

cr
ed

en
ce

s 
o
f 

o
th

er
s.



1016 Oktar et al.

could compare—across all 225 opinion distributions—
the relationship between model predictions and mean 
participant judgments. This constituted a much more 
stringent test of our models: Whereas correlations ask 
whether models capture the pattern of inferences, com-
paring model predictions in the original space allowed 
us to ask whether models provide accurate quantitative 
predictions of inference (see Fig. 5).

To compare the relative performance of each model, 
we therefore adopted a more stringent predictive test 
than comparing correlations. We preregistered analyses 
comparing the Akaike Information Criterion (AIC) 
scores of three separate linear regressions—each regres-
sion predicting mean participant judgments from model 
predictions across the 225 points. Note that AIC is an 
estimator of prediction error that penalizes flexibility 
(i.e., models with more parameters but the same predic-
tive performance have worse AIC scores). This is key, 
as we are not just interested in which individual model 
provides the best predictions but are also interested in 
comparing the performance of model ensembles, which 
combine multiple models to generate predictions. The 

penalties explain why ensembles, which have more 
parameters than individual models, would not neces-
sarily have better AIC scores, even if they made more 
accurate in-sample predictions.

To investigate whether our models were better at 
explaining judgments cumulatively than individually, 
we compared the AIC scores of all ensembles (i.e., 
linear combinations of models) with the scores of indi-
vidual models. We were uncertain whether the addi-
tional models would yield improvements in performance 
over the Bayesian model. This analysis revealed that 
ensembles outperform individual models—with the 
addition of Competence conferring a larger boost in 
prediction than UPCO (see Fig. 6a).

One explanation for why ensembles outperform 
individual models is that there may be heterogeneity 
across participants’ inference strategies. Although Bayes 
best predicts judgments overall, some participants’ 
behavior could be better captured by heuristic models. 
To investigate this possibility, we conducted an explor-
atory participant-level analysis in which we calculated 
the proportion of participants whose responses were 
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Fig. 3. Correlations between human judgments and model predictions from Experi-
ment 1. Correlations across mean participant estimates and model predictions are 
shown in (a); the shaded area represents 95% confidence intervals. The correlations 
between each participant’s judgments and model predictions are illustrated in (b), 
and the red point represents the mean. UPCO = updating on the credences of others.
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best captured by the three models. Using the same  
participant-level correlation and deviation analyses as 
in Experiment 1, we found that UPCO and Competence 
were better predictors of one quarter of our participants’ 
judgments (see Fig. 6b). These analyses thus revealed 
substantial heterogeneity in people’s inferences.

Discussion

The densely sampled stimuli in Experiment 2 extended 
our prior results by showing that Bayes not only per-
forms well for points that differentiate between our 
models but also generalizes well to the broader space 
of opinion distributions. Moreover, our analyses reveal 
that people use a diversity of inference strategies.

Experiment 3: Integrating Prior Beliefs 
With Opinions

In our final study, we conducted a more stringent test 
of the Bayesian model by investigating (a) whether it 
continues to be the best predictor when there is varia-
tion in priors and (b) how it performs when participants 
evaluate real claims. To address these questions, we 
elicited participants’ prior beliefs about 18 trivia state-
ments, provided them with aggregated opinions, and 

investigated their updated judgments. The Bayesian 
model predicts that people’s judgments should vary 
with the prior probabilities assigned to statements (see 
Supplemental Materials G).

Method

Participants. Following a power analysis with pilot data 
(see Supplemental Materials E), we recruited 295 adults 
(163 male, 126 female, 6 other; mean age = 42 years), as in 
Experiment 2, for a slightly longer study. Participants were 
paid $2.00 for a 10-min study; 60 participants were 
excluded from analyses on the basis of preregistered crite-
ria (52 for completing the experiment in an unrealistic 
amount of time, 8 for failing an attention check). This 
study’s design, hypotheses, and analyses were preregis-
tered; see https://aspredicted.org/PHZ_XDB.

Materials and procedure. Participants completed a 
task similar to that of Experiment 1. Instead of rating 
masked statements, however, each participant was 
assigned a random pairing of 18 actual trivia statements 
with the panel opinion distributions used in Experiment 
1. All participants thus evaluated all 18 trivia items and 
panel distributions, but they received differing subsets of 
all possible trivia and panel combinations (18 × 18 = 324 
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possible combinations). The order of presentation was 
randomized both within the first set of prior judgments 
and the later set of updated judgments.

To ensure that our stimuli spanned multiple domains 
and confidence levels, we sampled trivia from the Gen-
eral Knowledge Norms data set (GKN; S. K. Tauber 
et al., 2013), which provides updated information on 
the original set of 300 general-information questions 
from Nelson and Narens (1980). These questions span 
a wide variety of domains, including history, sports, art, 
geography, literature, and entertainment, and the GKN 
includes a variety of measures, such as people’s confi-
dence in their beliefs about each item. We uniformly 
sampled 18 questions that evenly spanned the range of 
confidence to use in our study. This resulted in a diverse 
set of statements; participants would have very strong 
priors on some of them (hence, they would be able to 
easily identify the statements as true or false), but they 
would lack informative priors on others (and hence 

would not be confident). Using this diverse set increases 
the odds that the predictive comparisons of our models 
would generalize across issues on which people have 
weak and strong priors.

To generate true and false items, we used data in the 
GKN to rank questions by prior confidence. Starting 
with the most well-known item, we generated false 
answers to every other statement in the ranking, and 
the rest were paired with correct answers, resulting in 
nine true and nine false items. Some of the false answers 
were generated to be obviously false (e.g., that venison 
is the name of ox meat—when it is actually the name 
of deer meat), whereas others were false in more subtle 
ways (e.g., that the Bismarck is the name of a German 
battleship that was sunk in World War I—when it was 
actually sunk in World War II). This variance prevented 
falsity from being confounded with the strength of prior 
knowledge: If all statements were obviously false, even 
otherwise unknown trivia items would become obvious 
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a regression table). UPCO = updating on the credences of others.
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(e.g., if the warship item had read, “Bismarck is the 
name of the Saudi Arabian battleship sunk in World 
War I,” it would have become a trivially easy item).

The final set covered statements that are both well 
known (e.g., “POPEYE IS THE NAME OF THE COMIC 
STRIP CHARACTER WHO EATS SPINACH TO INCREASE 
HIS STRENGTH”), partially known (e.g., “CANBERRA 
IS THE CAPITAL OF AUSTRALIA”), and relatively 
unknown (“DITHERS IS THE LAST NAME OF DAG-
WOOD’S MAID IN THE COMIC STRIP ‘BLONDIE’”; see 
Supplemental Materials F for a list of all statements).

Participants first provided their prior truth judgments 
for the statements (“Based on your prior knowledge, 
how likely do you think it is that this statement is true?”) 
on a truth slider scale ranging from definitely false (0) 
to definitely true (100). They then provided their con-
fidence in their prior judgments (“How confident are 
you in this response?”) on a scale ranging from not at 
all (0) to extremely (10). They then learned about the 
panel’s opinion distribution and provided their final 
judgments using the same truth scale:

In this round of Know-off, the following statement 
was shown to the contestant: [STATEMENT]. For 
this question, [NX] members of the audience were 
chosen as members of the jury. [X1] of them 
thought that the statement was true. [X0] of them 
thought that the statement was false. How likely 
do you think it is that the correct answer was true?

The 18 true/false combinations for the jury (corre-
sponding to [NX], [X1], and [X0] above) were taken from 
Experiment 1. The order in which statements were pre-
sented was randomized both within each experiment 
(across the prior and posterior measures) and across 
participants. Participants then provided demographic 
information.

Note that we need to infer participants’ prior distri-
butions from their judgments to fit the Bayesian 
model—we describe our preregistered method for fit-
ting these distributions in Supplemental Materials G, 
and we also provide details on the fitting of all three 
models. Importantly, we explicitly emphasized in our 
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Fig. 6. Model and ensemble comparisons from Experiment 2. In (a) we show 
Akaike Information Criterion (AIC) values for regressions predicting judgments 
from model predictions and linear combinations of models (because smaller AIC 
values indicate better fit, the horizontal axis has been flipped). Bayes was the best 
individual predictor, but it was outperformed by ensembles. In (b) we illustrate 
which model best captured inferences at the level of individual participants. B = 
Bayes; U = UPCO, updating on the credences of others; C = Competence.
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instructions and comprehension checks for this study 
that the jury members deliberated independently (see 
Supplemental Materials F—Experimental Preamble).

Results

We first verified that the trivia we sampled spanned a 
range of prior beliefs, from statements generally known 
to be true or false to highly uncertain statements. The 
distribution of judgments indicates that we successfully 
sampled a diverse set of items (see Fig. 7).

We then investigated which models best predicted 
participants’ responses by conducting the same AIC-
based comparisons of individual models and ensembles 
used in Experiment 2. We opted to conduct our analysis 
across all judgments because most participants received 
unique combinations of opinions and statements, which 
reduced the informativeness of mean comparisons. As 
with our prior studies, we hypothesized that the Bayes-
ian model would best predict judgments but were 
agnostic with regard to whether ensembles would out-
perform individual models.

Our results supported this hypothesis, as the Bayes-
ian model had the best individual predictive perfor-
mance. Moreover, we obtained largely the same ordering 
of model performance as in Experiment 2, with ensem-
bles boosting the performance of the Bayesian model 
(see Fig. 8 for comparisons of AIC scores and Supple-
mental Fig. S11 for a plot of all judgments).

Note that the AIC scores in Figure 8 are estimates from 
a fixed-effects analysis with the three models as predic-
tors. It is important to note that including random inter-
cepts for items and participants in a more comprehensive 
mixed-effects model did not change the predictive order-
ing of models or any conclusions (see Supplemental Figs. 
S12 and S13 for both regression tables and a discussion 
of our preregistered analysis plan).

Beyond replicating comparisons across our three 
models, these data allowed us to investigate how the 
Bayesian model would compare to purely proportion- 
and prior-based heuristics. In our previous studies, the 
Bayesian model’s predictions were difficult to disen-
tangle from proportion-based heuristics, because of the 
absence of prior information. We hypothesized that 
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Fig. 7. Prior truth judgments for trivia statements used in Experiment 3. Participants’ 
truth judgments for the chosen trivia statements show that our stimuli span truth 
inferences (from definitely false to definitely true) as well as confidence levels (from 
not at all confident to extremely confident). Points were slightly jittered to display 
overlapping data; black points show mean truth inferences with bootstrapped 95% 
confidence intervals. Each row plots responses to a particular item; Supplemental 
Materials F contains further details on these items.
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participants’ inferences would be better characterized 
by the Bayesian model than by heuristic strategies that 
did not integrate prior knowledge with the data.

Our results supported this prediction. The propor-
tion heuristic AIC ≈( )1722  and the prior heuristic 
AIC ≈( )922  underperformed relative not just to the 

Bayesian model AIC ≈( )410  but also relative to UPCO 
AIC ≈( )497  and Competence AIC ≈( )507  across the 

same regression-based comparisons (lower AIC values 
indicate better predictive performance).

We also hypothesized that the Bayesian model would 
best characterize individual participants’ inferences. 
Our data supported this hypothesis as well, with Bayes 
best capturing 43% of participants’ estimates in terms 
of correlations and 48% in terms of deviations. In par-
ticular, Bayes outperformed the other models in cases 
of large updates (see Supplemental Fig. S14). Yet there 
is a decrease in the proportion of participants best 
characterized by Bayes from Experiment 2, which sug-
gests that more participants utilize heuristics for the 
more complex judgments in Experiment 3.

Discussion

This experiment shows that the Bayesian model best 
predicts inferences even when participants must inte-
grate prior beliefs with aggregated opinion. Once again, 
the best-performing model is an ensemble enriched by 
other models, because of heterogeneity across partici-
pants’ strategies.

General Discussion

How do our opinions reach beyond the horizon of our 
experiences? Past work has emphasized that we learn 
much of what we know from others—often through 
local, social interactions (Harris et  al., 2018), and 
increasingly through exposure to the aggregated views 
of many others (through likes, polls, and reviews;  
Kozinets et  al., 2010). Recent work has investigated 
learning from aggregated opinion and reached diverg-
ing conclusions—people seem radically insensitive to 
aggregated opinion in some cases, and overly sensitive 
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Fig. 8. Model and ensemble comparisons from Experiment 3. In (a) we show Akaike 
Information Criterion (AIC) values for regressions predicting judgments from model 
predictions and linear combinations of models (because smaller AIC values indicate 
better fit, the horizontal axis has been flipped). Bayes was the best individual pre-
dictor, but it was outperformed by ensembles. In (b) we show which model best 
captured inferences at the level of individual participants. B = Bayes; U = UPCO, or 
updating on the credences of others; C = Competence.
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in others. To reconcile these findings, we proposed a 
Bayesian model of learning from aggregate opinion and 
conducted three experiments to compare the predic-
tions of this model with human judgments. Across all 
experiments, we found the strongest concordance 
between participants’ judgments and the predictions of 
the Bayesian model over two tested alternatives, though 
many participants utilized alternative strategies, and 
models performed best in predicting aggregate judg-
ments. Importantly, the predictive success of the Bayes-
ian model does not necessarily indicate that people are 
performing Bayesian inference, as this model results in 
a simple strategy for combining priors and proportions. 
The Bayesian analysis does explain, however, why 
people might follow this strategy: it corresponds to a 
reasonable statistical inference (for further discussion, 
see Marr, 1982; S. S. Tauber et al., 2017).

These results raise important questions. First, how 
can people’s inferences be best characterized by a 
Bayesian model, when prior work has found that people 
over- or underweight aggregated opinion? Our formal 
analysis highlights three factors as potential explana-
tions for this discrepancy: prior beliefs about controver-
sies, the reliability of disagreeing parties, and dependency 
structures across informants. For instance, strong prior 
beliefs about controversies (e.g., climate change) can 
lead people to persist in their views amid disagreement 
and hence appear insensitive to aggregated opinion 
(Oktar & Lombrozo, 2022). On the other hand, prior 
belief in the independence of news sources can lead 
people to draw strong conclusions from aggregated 
opinion (Desai et al., 2022). Relatedly, the complexity 
of the task may matter: We found that more participants 
relied on alternative heuristics in Experiment 3, poten-
tially because of the increased demands of integrating 
prior information with opinion data. Whether people’s 
views are well calibrated can therefore be adjudicated 
only on a case-by-case basis, through modeling and 
measurement of factors such as informant reliability 
(Landrum et al., 2015) and dependency (Whalen et al., 
2018). Future work could explore cross-cultural and 
contextual variance in inferences as well as departures 
from the assumption that the distribution of opinion 
directly maps onto the probability of truth.

Second, do our results generalize to real-world opinion- 
aggregation problems? The answer depends on the 
extent to which a particular problem matches our task. 
For instance, the results of Experiment 3 suggest that 
the Bayesian model will perform well in predicting how 
people utilize aggregate opinions in actual trivia con-
tests, as our task is isomorphic to the inference problem 
posed in this case (e.g., the “ask the audience” lifeline 
in Who Wants to Be a Millionaire?). When it comes to 

real-life controversies such as abortion, however, gen-
eralizability is an open question, given differing 
assumptions about the reliability (Hartman et al., 2022) 
and dependence ( Judd & Park, 1988) of disagreeing 
others, as well as variation in the aggregation and pre-
sentation of opinions (Fisher et  al., 2018). Moreover, 
the psychology of controversy is clearly shaped by fac-
tors beyond the epistemic—such as inferences about 
an issue’s subjectivity (Oktar & Lombrozo, 2022). Our 
experimental paradigm can be adapted to investigate 
the influence of many such factors.

With widening rifts of opinion corroding the founda-
tions of many democracies across the globe, elucidating 
when and why we learn from controversy (i.e., polarized 
aggregated opinion)—or fail to do so—is becoming an 
increasingly important goal. Our work advances this aim 
with both methodology and theory. Methodologically, 
our approach demonstrates how formal theories can be 
combined with experimental data to systematically inves-
tigate questions about mass opinion. Theoretically, we 
have identified key factors underlying inferences from 
aggregated opinion, and we have shown that in simple 
cases many people can draw Bayesian inferences across 
opinion distributions. This suggests that persistence amid 
controversy is grounded in rich inferences about reli-
ability, dependence, and beyond, rather than an inability 
to draw inferences from aggregated opinion.
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