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Abstract

How does the act of explaining influence learning? Prior work has studied effects of explaining
through a predominantly proximal lens, measuring short-term outcomes or manipulations within lab
settings. Here, we ask whether the benefits of explaining extend to academic performance over time.
Specifically, does the quality and frequency of student explanations predict students’ later performance
on standardized tests of math and English? In Study 1 (N = 127 5th−6th graders), participants com-
pleted a causal learning activity during which their explanation quality was evaluated. Controlling for
prior test scores, explanation quality directly predicted both math and English standardized test scores
the following year. In Study 2 (N = 20,384 10th graders), participants reported aspects of teachers’
explanations and their own. Controlling for prior test scores, students’ own explanations predicted
both math and English state standardized test scores, and teacher explanations were linked to test per-
formance through students’ own explanations. Taken together, these findings suggest that benefits of
explaining may result in part from the development of a metacognitive explanatory skill that trans-
fers across domains and over time. Implications for cognitive science, pedagogy, and education are
discussed.
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1. Introduction

Cognitive, educational, and developmental scientists have established many benefits of
explanations for learning. Explanations can support the acquisition of new content and the
development of domain-specific skills (e.g., Chi, 2018; Chi & Fonseca, 2011; Rittle-Johnson,
2006; Webb, 1982b). Explanations can also support the development of domain-general skills,
such as metacognitive monitoring (Chi, 2018; Moreno & Mayer, 2000; Rozenblit & Keil,
2002), which are especially promising targets for educational interventions (Duncan et al.,
2007): if explanations foster general skills for learning, explaining could have learning ben-
efits that accrue over time and that transfer across domains. Because prior work has over-
whelmingly focused on short-term effects of explanations within particular content domains
(e.g., Chi & Fonseca, 2011; Lombrozo, 2016; Rittle-Johnson, 2006), this possibility remains
unexplored. Here, we ask: Can the benefits of explanations extend to long-term, distal out-
comes, such as academic performance on standardized tests? And do such benefits generalize
across domains? We address these questions using two existing datasets: one that allows us
to evaluate explanation quality and quantity in a causal learning task with elementary-school-
aged children, and another that involves a large sample of adolescents who reported aspects
of teachers’ explanations and their own. In each case, we test whether explanation frequency
or quality predicts later standardized test scores (both math and English), controlling for prior
standardized test performance and various demographics.

This work builds on previous research demonstrating that explanations support both content
learning and skill learning. Contributing to content learning, explanations facilitate the acqui-
sition and transfer of material by scaffolding problem representations that support generaliza-
tion, with effects documented in children as young as 3–6 years (e.g., Legare & Lombrozo,
2014; Walker & Lombrozo, 2017; Walker, Lombrozo, Williams, Rafferty, & Gopnik, 2017)
and in adulthood (e.g., Edwards, Williams, Gentner, & Lombrozo, 2019; Lombrozo, 2016;
Williams & Lombrozo, 2010). For example, 8- to 11-year-old children who practiced addition
problems were more likely to succeed in solving transfer subtraction problems if prompted to
explain the initial addition problems (Rittle-Johnson, 2006; see also Webb, 1982a).

Supporting skill learning, explaining can improve metacognitive calibration in both adults
(e.g., Rozenblit & Keil, 2002) and school-aged children (Mills & Keil, 2004), direct process-
ing to explanation-relevant content in both adults (e.g., Williams & Lombrozo, 2013) and
children (e.g., Legare & Lombrozo 2014; Vasil, Ruggeri, & Lombrozo, 2022; Walker et al.,
2017; Walker, Lombrozo, Legare, & Gopnik, 2014), and support abstract causal reasoning
that directs further inquiry by age 8 (Astington & Gopnik, 1991; Chuey et al., 2021; Goddu,
Lombrozo, & Gopnik, 2020; Gopnik, 2000; Kushnir, Vredenburgh, & Schneider, 2013; Rug-
geri, Xu, & Lombrozo, 2019). Moreover, explaining can itself be cultivated as a skill: beyond
individual differences in self-explanation (Ainsworth & Loizou, 2003; Aleven & Koedinger,
2002; Chi, 2018; Renkl, 1997), there is evidence from high school and college students that
self-explanation can be trained (Bielaczyc, Pirolli, & Brown, 1995; McNamara, 2017; McNa-
mara, O’Reilly, Rowe, Boonthum, & Levinstein, 2007).

Given the strong link between metacognitive skills and academic achievement (Aleven &
Koedinger, 2002; Blair & Raver, 2014; Duckworth, Kirby, Gollwitzer, & Oettingen, 2013;
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Mills & Keil, 2004), as well as consistent, robust associations between metacognitive skills
and long-term academic achievement (Duncan et al., 2007), we might expect that being a fre-
quent and adept explainer similarly improves academic performance, with potentially distal
effects (e.g., on later standardized test scores). However, this has not been tested in prior work.
The only study investigating effects of explanation that included standardized test scores (that
we know of) comes from Chi, De Leeuw, Chiu, and LaVancher (1994), who showed eighth-
graders learned more about the circulatory system when prompted to explain as they studied
an expository text. The benefits of being prompted to explain held when controlling for prior
standardized test performance, and within the group of students prompted to explain, gains
were comparable (around 30%) for those scoring highest and lowest on the standardized test.
Our datasets allow us to evaluate whether explanation quantity and skill predict later per-
formance not only controlling for prior test scores, but also investigating standardized test
performance itself as a long-term, distal outcome.

1.1. The present study

In sum, prior work has documented relationships between explanation and skills important
for learning (such as metacognitive monitoring), as well as links between metacognitive skills
and academic achievement. However, prior work has not (a) tested the frequency or quality of
explanations as predictors of academic achievement (e.g., on standardized test scores for math
and English), (b) studied these associations longitudinally while controlling for prior perfor-
mance, or (c) done so with large, diverse samples. These gaps represent important avenues
to pursue. Beyond informing our understanding of how explaining shapes learning, finding
links between explanation and later academic achievement has important implications for
education. Thus, we posit and test the hypothesis that explanation frequency and quality both
reflect and support learning skills (such as metacognitive monitoring) that contribute to aca-
demic achievement over time and across domains.

We utilize two unique datasets that allow us to test our hypotheses with parallel models
and different samples, with both math and English Language Arts (ELA) state standardized
test scores, while also controlling for prior scores. Our first dataset is a sample of 127 par-
ticipants (ages 10–12 years) who were involved in a study investigating different aspects of
self-regulation (i.e., cognitive vs. behavioral) as predictors of inductive learning and academic
achievement (Modrek, Kuhn, Conway, & Arvidsson, 2019). While aspects of these data have
been previously published, our own analyses are based on unpublished data that have not
been previously analyzed, and that offer a direct test of our hypotheses. Specifically, by cod-
ing explanations generated during an inductive learning task (Study 1), the data allow us to
evaluate the quality and frequency of explanations and their association with both math and
ELA state standardized test scores across 2 years. Our second dataset (Study 2) offers a con-
ceptual replication and extension with a sample of 20,384 participants (primarily aged 15)
from a quasi-experiment across the United States, part of a larger project with The William
and Flora Hewlett Foundation and American Institutes for Research (AIR) focused on pro-
moting opportunities for deeper learning (e.g., complex problem-solving) with deeper learn-
ing schools. This quasi-experiment includes non-charter/non-magnet schools that underwent
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professional development focused on deeper learning, as well as demographically matched
non-charter/non-magnet schools that did not receive this professional development. Within
this larger project, student participants completed several scales (Locus of Control, Self-
Efficacy, Belonging, etc.) and additional ratings, totaling approximately 200 items. Among
the items that did not belong to formal scales were questions about explanation. These items
have not been previously analyzed or published; we use them here as a proxy for explanation
frequency in classrooms. In partnership with AIR, our dataset includes student participants’
math and ELA state standardized test performance, along with their prior scores (to serve as
controls). Taken together, these two datasets offer a unique opportunity to test our hypotheses
concerning the link between explanation and state standardized test performance across both
math and ELA (while controlling for prior scores).

Given that we used existing datasets, our procedures were not preregistered. However, all
hypotheses were theory-driven and formulated prior to testing; analyses and results are thus
confirmatory.

2. Study 1

Participants provided explanations during an inductive learning activity administered early
in the academic year. State standardized test scores were obtained approximately 2 years later
and included both the year during which the activity was administered and the following
year. This allowed us to test the hypothesis that explanation quantity and quality, as assessed
during the inductive learning activity, predicts later academic achievement (controlling for
prior standardized test scores).

2.1. Methods

2.1.1. Participants
Participants were 127 students aged 10–12 years (at baseline) recruited from fifth and sixth

grade classes in a metropolitan school district in New York (Mage = 11.3, SD = 0.67; 55%
female; 45% male). The sample was 52% Caucasian, 12% Asian, 10% African-American, 7%
Hispanic, and 19% mixed background. Many were bilingual (56%), with common languages
including Russian, Hebrew, Italian, Greek, and Mandarin. According to the state Department
of Education, school performance ranking was in the 47th percentile. Approximately 10% of
students qualified for free/reduced-price lunch (FRPL).

2.1.2. Materials and procedure
2.1.2.1. Inductive learning task: Participants completed an inductive learning task

requiring them to examine data consisting of cases that varied on multiple dimensions to
identify associations with an outcome variable. Similar tasks have been used in studies inves-
tigating inquiry learning, causal learning, inductive inference, and problem-solving (Dean
& Kuhn 2007; Greiff et al., 2013; Holyoak & Cheng 2011). The task was administered
individually to each participant and took on average 60 minutes. There were three phases
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(introduction, induction, application), described below. Explanations were collected at four
points during the induction phase. (For complete task procedures and instructions, see Mod-
rek et al., 2019.)

During the introduction phase, participants learned about a space foundation recruiting
astronauts. The foundation was investigating four factors (fitness, family size, education,
and parents’ health) that might affect astronaut performance. Participants reported their prior
hypotheses about each factor: whether it would have an effect on performance, and if so, in
what direction (e.g., whether large vs. small family size predicts better performance).

During the induction phase, participants received data about how astronauts performed
in a simulator. The dataset contained exemplars of astronauts with varying fitness, family
size, education, and parents’ health. Participants could compare or request specific cases to
review. Each factor was investigated serially, and the interviewer invited (but did not require)
participants to conclude whether the factor made a difference. After each factor, participants
were asked to explain how they drew each inference. This was repeated for all four factors
until participants reported being satisfied with their level of inquiry. By the end of this phase,
participants had a summary sheet indicating their final inferences about all factors.

During the application phase, participants were presented with profiles of new astronauts,
which they evaluated with access to their summary sheet. Participants had to predict how well
each astronaut would perform, reported on a Likert scale. This allowed us to assess the extent
to which participants relied on learning in the induction phase, versus initial hypotheses based
on prior beliefs.

2.1.2.2. State standardized test scores: Math and English state standardized test scores
(ranging from 1 to 4) were obtained for all participants, across 2 years: both the end of the
academic year during which the inductive learning task was administered, as well as the
following year.

2.1.3. Scoring
Participants were first given a score (0/1) based on whether they provided an explanation

justifying how they drew an inference. Next, participants received a separate score (0/1) based
on whether they explained their inference in line with the observed data. Making no reference
to the data would result in a score of 0. Finally, participants received a third score (0/1) indi-
cating whether they provided an explanation that referenced the data and evidence accurately
and consistently across the task. These three scores resulted in a single composite score of 0–3
designed to assess the quality and quantity of explanations generated in the task (see Table 1).
For reliability, a second rater independently coded 10% of the explanation data, achieving a
kappa of .815 with the ratings of the first author.

2.2. Results and discussion

We first report descriptive statistics for our variables of interest: explanation scores (M =
1.080, SD = 1.004), math standardized test scores (M = 3.702, SD = .612), and English
standardized test scores (M = 3.479, SD = .641). We next test our focal hypothesis that

 15516709, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13496, W

iley O
nline L

ibrary on [19/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 18 A. S. Modrek, T. Lombrozo / Cognitive Science 48 (2024)

Ta
bl

e
1

C
od

in
g

of
pa

rt
ic

ip
an

te
xp

la
na

tio
ns

in
St

ud
y

1

Sc
or

e
E

xa
m

pl
e

M
ec

ha
ni

st
ic

ju
st

ifi
ca

tio
n

0:
Pa

rt
ic

ip
an

ts
im

pl
y

re
st

at
ed

an
as

so
ci

at
io

n
w

ith
ou

to
ff

er
in

g
an

ex
pl

an
at

io
n.

“…
yo

u
ha

ve
to

go
to

co
lle

ge
if

yo
u

w
an

tt
o

be
a

go
od

as
tr

on
au

t…
”

“…
I

m
ea

n
I

ju
st

th
in

k
th

at
yo

u
ne

ed
to

ha
ve

th
e

ov
er

al
lp

ac
ka

ge
an

d
lo

ts
of

th
in

gs
go

in
g

fo
r

yo
u.

”
1:

Pa
rt

ic
ip

an
tp

ro
vi

de
d

a
m

ec
ha

ni
sm

un
de

rl
yi

ng
an

as
so

ci
at

io
n

to
ju

st
if

y
an

in
fe

re
nc

e.

“…
w

he
n

yo
u

ar
e

m
or

e
fit

I
gu

es
s

m
ay

be
it’

s
ea

si
er

to
do

th
in

gs
so

it’
s

be
tte

r
of

f
ha

vi
ng

ex
ce

lle
nt

th
an

av
er

ag
e

so
…

”

D
at

a
re

fe
re

nc
e

0:
Pa

rt
ic

ip
an

tp
ro

vi
de

d
no

re
fe

re
nc

e
to

da
ta

.
“…

I
gu

es
s

w
he

n
yo

u
ar

e
fit

it’
s

ea
si

er
to

do
th

in
gs

.”
1:

Pa
rt

ic
ip

an
te

xp
la

in
ed

in
fe

re
nc

es
us

in
g

da
ta

.
“…

so
bo

th
of

th
es

e
ta

bl
es

uh
ha

ve
th

e
sa

m
e

th
in

gs
ex

ce
pt

fo
r

[p
oi

nt
s

to
da

ta
]

12
w

hi
ch

ha
s

uh
fa

ir
pe

rf
or

m
an

ce
,a

nd
sh

e
di

d
po

or
ly

bu
tn

ot
as

ba
d

as
th

em
.”

In
te

rp
re

te
d

da
ta

ev
id

en
ce

co
rr

ec
tly

an
d

co
ns

is
te

nt
ly

0:
Pa

rt
ic

ip
an

te
ith

er
re

fe
re

nc
ed

da
ta

an
d

di
d

so
in

co
rr

ec
tly

or
di

d
no

tc
on

si
st

en
tly

re
fe

re
nc

e
da

ta
ac

ro
ss

th
ei

r
fo

ur
ex

pl
an

at
io

ns
.

[I
ni

ti
al

ly
ap

pe
al

s
to

da
ta

]
“…

it’
s

be
tte

r
to

ha
ve

a
sm

al
le

r
fa

m
ily

th
an

a
la

rg
er

fa
m

ily
.B

ec
au

se
Y

ol
la

nd
a

ha
d

a
sm

al
lf

am
ily

an
d

sh
e

di
d

w
el

la
nd

C
or

y
ha

d
a

la
rg

e
fa

m
ily

an
d

he
di

dn
’t

do
so

w
el

l…
”

[L
at

er
dr

aw
s

in
co

rr
ec

tc
on

cl
us

io
n

fr
om

da
ta

,s
ho

w
in

g
in

co
rr

ec
t/

in
co

ns
is

te
nt

us
e

of
da

ta
]

“…
be

ca
us

e
th

ey
ha

d
ex

ce
lle

nt
an

d
th

ey
st

ill
di

d
re

al
ly

ba
d.

I
st

ill
th

in
k

th
at

it
ki

nd
of

m
ak

es
a

di
ff

er
en

ce
,b

ec
au

se
w

he
th

er
he

al
th

w
as

fa
ir

or
ex

ce
lle

nt
th

ey
st

ill
di

d
ba

d…
”

1:
Pa

rt
ic

ip
an

tp
ro

vi
de

d
ex

pl
an

at
io

ns
th

at
re

fe
re

nc
ed

th
e

da
ta

ac
cu

ra
te

ly
an

d
di

d
so

co
ns

is
te

nt
ly

ac
ro

ss
al

lf
ou

r
ex

pl
an

at
io

ns
.

“…
lik

e
I

w
an

tt
o

fin
d

a
ca

rd
th

at
ha

s
lik

e
sm

al
lf

am
ily

.[
pa

rt
ic

ip
an

tp
oi

nt
in

g
to

ca
rd

th
at

al
lo

w
s

fo
r

co
nt

ro
lo

fv
ar

ia
bl

es
co

m
pa

ri
so

n
to

be
m

ad
e]

It
do

es
n’

tm
ak

e
a

di
ff

er
en

ce
.W

el
l,

ag
ai

n,
jo

hn
ha

s
a

sm
al

lf
am

ily
um

bu
tj

ak
e

ha
s

a
la

rg
e

fa
m

ily
an

d
th

ey
bo

th
di

d
ve

ry
w

el
lt

he
y

bo
th

ha
ve

ex
ce

lle
nt

ev
er

yt
hi

ng
an

d
bo

th
w

en
tt

o
co

lle
ge

bu
to

ne
ha

s
sm

al
lf

am
ily

an
d

on
e

ha
s

la
rg

e
bu

tb
ot

h
ha

d
sa

m
e

pe
rf

or
m

an
ce

…
”

fo
llo

w
ed

by
a

la
te

r
ex

pl
an

at
io

n
gi

ve
n

to
ju

st
if

y
th

ei
r

co
nc

lu
si

on
“…

..w
el

lI
w

en
t

ba
se

d
of

f
of

th
e

ca
rd

s
an

d
tr

ie
d

to
m

ak
e

su
re

ev
er

yt
hi

ng
el

se
w

as
th

e
sa

m
e

be
si

de
s

fo
r

w
ha

tw
e

lo
ok

ed
at

.”
F

in
al

ex
pl

an
at

io
n

sc
or

e
ra

ng
e:

0–
3

 15516709, 2024, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13496, W

iley O
nline L

ibrary on [19/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A. S. Modrek, T. Lombrozo / Cognitive Science 48 (2024) 7 of 18

Fig. 1. Theoretical model tested in Study 1.

Table 2
Explanations predicting state standardized test scores for math and ELA across 2 years

Coef. Std. Error z p [95% Conf. Interval]

English
English (Time 2)

Explanations .1280295 .0638299 2.01 .045 .0029252 .2531339
English (Time 1) .6638868 .0485702 13.67 .000 .5686909 .7590828
Gender −.0333797 .0634345 −0.53 .599 −.1577091 .0909497
Bilingualism .0433802 .0629637 0.69 .491 −.0800264 .1667867
Age .0523568 .0651318 0.80 .421 −.0752992 .1800127
Intercept .784727 1.082957 0.72 .469 −1.337829 2.907283

Math
Math (Time 2)

Explanations .1492751 .0558829 2.67 .008 .0397466 .2588037
Math (Time 1) .714542 .0389678 18.34 .638 .6004788 .7909174
Gender −.0653756 .0531368 −1.23 .219 −.1695218 .0387706
Bilingualism .0505556 .0561943 0.90 .368 −.0595832 .1606944
Age .0860296 .0558787 1.54 .124 −.0234907 .1955499
Intercept .190344 .9681453 0.20 .844 −1.707186 −1.707186

Note. Results are standardized. N = 127. Participants self-reported gender, with 55% identifying as female and
45% identifying as male (coded as 1 or 0, respectively). If participants self-reported being bilingual, a researcher
asked them to recite a basic introductory greeting. If participants showed basic proficiency, their bilingualism score
was 1, and if they either reported not being bilingual, or were unable to provide a basic introductory greeting, their
bilingualism score was 0; about half (56%) were bilingual.

explanation quality and quantity (as reflected in the explanation score) predicts state stan-
dardized test performance, even controlling for prior scores (see theoretical model, Fig. 1).

All models included age, gender, and bilingualism as covariates, as these factors had sig-
nificant associations with explanation, math, or English scores (age & explanation: r = .229,
p < .01; age & English scores: r = .176, p < .05; gender & English scores: r = .241, p < .05;
bilingualism & English scores: r = .217, p < .05).

We employed a linear regression model providing a saturated, perfect fit to the data using
a restricted maximum likelihood approach as a form of maximum likelihood estimation that
does not base estimates on a maximum likelihood fit of all the information, but instead uses
a likelihood function calculated from a transformed set of data. We entered year 2 state stan-
dardized test performance as the dependent variable, controlling for respective prior scores,
followed by the aforementioned covariates. Separate models were run for English and math
scores.
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As hypothesized, explanations predicted state standardized test performance, for both
English and math, controlling for respective prior scores (see Table 2). Given that the explana-
tions elicited during the inductive learning task did not share content with the math or English
standardized tests, this suggests that explanatory tendency or skill, as reflected in the expla-
nation score from the inductive learning task, explained unique variance in later academic
achievement. Controlling for prior test scores helps rule out the plausible alternative that
explanatory tendency and skill instead shared a common cause with later test performance
(such as general academic ability).

We also disaggregated explanation scores to test whether explanation quality and quantity
each contributed to predictions. We entered each individual score in our models in lieu of
the composite. For English, the first and third scores were significant predictors (95% CI
[.0778972, .4167099] p = .004; 95% CI [.0033406, .1918635] p = .042, respectively); the
second was not (95% CI [−.1004695, .2718672] p = .367). For math, the results were the
same: the first and third scores were significant predictors (95% CI [.0865342, .3733355] p
= .002; 95% CI [.0211586, .1808575] p = .013, respectively); the second score was not (95%
CI [−.0706251, .251285] p = .271). This suggests that while explanation quality and quantity
both mattered, simply explaining (the first score) was sufficient to predict later academic
performance.

3. Study 2

A large sample of 10th-grade students completed questionnaires early in the academic year.
State standardized test scores for math and English were obtained for that same year as well
as prior years. This allowed us to test our hypothesis that explanations during the school year
would predict standardized test scores for that same year, even controlling for the prior year’s
test performance. Additional measures allowed us to assess the role of students’ reports of
teachers’ explanations, and to compare the effects of reported explanation to those of other
constructive activities (such as combining different ideas).

3.1. Methods

3.1.1. Participants
Participants were 20,384 10th-grade students, primarily aged 15 (Mage = 15.977, SD =

0.848), sampled from 24 non-magnet/non-charter schools across the United States. Across
the 24 schools, racial demographics were mixed, resulting in a diverse sample. On average,
60% of students qualified for FRPL. (For additional demographics, please see Table S1.)
About half the schools reported participating in professional development focused on deep
learning (which we control for in our models, described below).

3.1.2. Materials and procedure
3.1.2.1. Explanations: Participants answered six items about explanation (see Tables 3

and 4): three about their own explanations (e.g., “I interpret data and explain what the results
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Table 3
Structural equation models for math and ELA standardized test scores predicted by teacher explanation scale, then
student explanation scale, after controlling for prior scores

Coef. Std. Error z p>|z| [95% Conf. Interval]

English
Student Explanations

Teacher Explanations .3778202 .0367543 10.28 .000 .305783 .4498574
English (8th grade) .0915569 .0717385 1.28 .202 −.049048 .2321618
English (7th grade) .0901034 .0716018 1.26 .208 −.0502336 .2304403
School Professional Development −.0571506 .0412428 −1.39 .166 −.1379851 .0236838
Intercept .8474783 .3566683 2.38 .017 .1484212 1.546535

English (10th grade)
Student Explanations .0565916 .0284449 1.99 .047 .0008406 .1123426
Teacher Explanations −.0038417 .0280234 −0.14 .891 −.0587666 .0510831
English (8th grade) .377042 .0441966 8.53 .000 .2904182 .4636658
English (7th grade) .4661155 .0434488 10.73 .000 .3809574 .5512735
School Professional Development −.0210007 .0261147 −0.80 .421 −.0721846 .0301833
Intercept −5.41368 .1543291 −35.08 .000 −5.71616 −5.111201
var(e.StudentExplanations) .8156301 .0300874 .7587412 .8767844
var(e.English10thgrade) .3244561 .0196059 .2882175 .3652511

Math
Student Explanations

Teacher Explanations .3812397 .0366281 10.41 .000 .30945 .4530294
Math (8th grade) .0552628 .0580121 0.95 .341 −.0584387 .1689644
Math (7th grade) .1210385 .0576156 2.10 .036 .0081141 .233963
School Professional Development −.0643845 .0411533 −1.56 .118 −.1450434 .0162744
Intercept .9994371 .3368445 2.97 .003 .3392339 1.65964

Math (10th grade)
Student Explanations .0633838 .0320145 1.98 .048 .0006364 .1261311
Teacher Explanations .0235085 .0315947 0.74 .457 −.0384161 .085433
Math (8th grade) .2548453 .0405246 6.29 .000 .1754185 .334272
Math (7th grade) .5380281 .0376613 14.29 .000 .4642133 .611843
School Professional Development −.0515285 .0293676 −1.75 .079 −.1090879 .0060309
Intercept −4.546492 .1746181 −26.04 .000 −4.888737 −4.204246
var(e.StudentExplanations) .8178218 .029976 .7611305 .8787355
var(e.Math10thgrade) .4133481 .0240285 .3688369 .4632308

Note. Results are standardized. Var(e.-) are variances as exogenous variables.

mean”; Cronbach’s alpha .54), and three about their teachers’ explanations (e.g., “My teacher
explains difficult things clearly”; Cronbach’s alpha .74). All items were rated on a frequency
scale (1-Never, 2-Some of the time, 3-Most of the time, 4-All of the time), and together
produced a Cronbach’s alpha of .72, demonstrating adequate reliability. In answering these
questions, students were instructed to think about their core classes (not one specific teacher).1

3.1.2.2. Non-explanation/comparison items: Participants also answered items about
other activities that plausibly support cognitive enrichment (see Table 4); these were ana-
lyzed in an effort to distinguish cognitive benefits that are potentially unique to explanation
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Fig. 2. Theoretical model tested in Study 2.

(see Kastens & Liben, 2007). To match the explanation items as closely as possible, the first
two items reflected the students’ own cognitive efforts (e.g., “I combine many ideas and pieces
of information into something new and more complex.”), and the second two items concerned
teacher efforts (e.g., “My teacher helps me learn to use different sources of information.”).
These were rated on the same frequency scale used for explanation items. Together, these
items produced a Cronbach’s alpha of .68, demonstrating acceptable reliability. Again, stu-
dents were instructed to think about their core classes when answering these questions, not
one specific teacher.

3.1.2.3. State standardized test scores: State standardized test scores for math and
English were obtained for all participants for 7th, 8th, and 10th grades.

3.2. Results and discussion

We first report descriptive statistics of our variables of interest: teacher explanations (M =
9.480, SD = 2.040), student explanations (M = 7.438, SD = 2.029), math state standardized
test scores (M = .063, SD = .982; standardized, with range of −2.947 to 1.737), English state
standardized test scores (M = .003, SD = .953; standardized, with range −3.028 to 1.833),
and non-explanation/comparison items (M = 11.922, SD = 2.626).

Our focal hypothesis was that more frequent explaining would predict stronger aca-
demic performance, as assessed by state standardized test scores. Study 2 addition-
ally allowed us to test the role of teacher explanations. Specifically, we posited that
teacher explanations would scaffold students’ explaining, in turn predicting state stan-
dardized test performance (see theoretical model, Fig. 2), even after controlling for prior
scores.

We tested this model for both math and English scores. We included additional covari-
ates when (a) there was a priori theoretical motivation for doing so, and (b) the covari-
ate showed a potential confounding effect. Thus, participation in deeper learning profes-
sional development was included as a covariate in all models given significant associa-
tions with explanation frequency (t = 6.894, p < .001) and state standardized test per-
formance in math and English (t = 6.575, p < .001; t = 5.224, p < .001). We utilized
structural equation modeling to estimate fully saturated models in path analyses. We uti-
lized maximum likelihood estimation for missing data (a common statistical tool used to
address implicit imputation of missing data, valid under the assumption that data are miss-
ing at random).2 The model provided a perfect fit to the data. We entered participants’
state standardized test scores from 10th grade as the dependent variable, controlling for
prior scores and whether the student was in a school with deeper learning professional
development.
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Fig. 3. Model depicting indirect, not direct, effect of teachers’ explanations predicting state standardized test
performance.
Note. * significant at p < .05, ** significant at p < .01, and *** significant at p < .001.

We first tested teacher explanations predicting student explanations in turn predicting state
standardized test performance, controlling for prior scores. As seen in Table 3, the predicted
path was significant in both models.

To scrutinize our hypothesis, we reran the models in alternative directions (student expla-
nations predicting teacher explanations predicting test performance). In this order, the model
was not significant for math or ELA (95% CI [−.0134111, .0333852] p = .403; 95% CI
[−.0166654, .0309812] p = .556).

Next, we tested a direct versus indirect effect from the focal predictor variable, teach-
ers’ explanations. We found that teacher explanations did not have a direct link to stan-
dardized test performance after controlling for prior scores (see Fig. 3; math: 95% CI
[−.0033839, .0392599] p = .099; ELA: 95% CI [−.0048268, .032601] p = .146).

These analyses support our interpretation (reflected in Table 3) that students’ own explana-
tions, predicted by teacher explanations, are what predict later test performance.

We next fit identical models, but replacing the explanation items with the corresponding
comparison items to test whether the effects reported above were potentially unique to expla-
nation, or if instead the explanation items were serving as proxies for more general cognitive
enrichment. Notably, explanation items and comparison items all showed significant, consis-
tent correlations with each other (see Table 4).

However, when we used comparison items in our models, none reached significance (see
Fig. 4). This suggests that associations found for explanations do not extend to similar, corre-
lated comparison items.

In sum, student explanations directly predict both math and English performance, after
controlling for prior ability. Testing direct versus indirect effects suggests the link between
teacher explanations and students’ standardized scores are fully explained by students’ own
explanations.

4. Discussion

Two studies—one assessing explanations directly, one using self-report in an educational
setting—found that explaining predicted standardized test performance. This result was
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Fig. 4. Teacher explanations predicting student explanation versus student non-explanation items and, in turn,
standardized test performance.
Note. * significant at p < .05, ** significant at p < .01, and *** significant at p < .001.

obtained for both math and English, suggesting domain-general effects. This result also held
while controlling for prior scores, which challenges the idea that associations between expla-
nation quality or quantity and test performance simply reflect a common cause, such as intelli-
gence or test-taking skill. (That said, it remains possible that explanation and test performance
were both shaped by some unmeasured variable, such as broader attitudes toward learning.)
Finally, in Study 2, these results were found to be unique to explanation, suggesting that
other forms of active student engagement do not necessarily have comparable effects. Though
there are important limitations that come with utilizing brief survey questionnaires as we did
in Study 2, it is striking, given the sparsity of the assessment, that we find the sizable and
consistent relationships that we do.

These findings have both theoretical and practical implications. Theoretically, an effect
of explanation skill on a distal academic outcome sheds light on the mechanisms by which
explaining might contribute to learning over time. In Study 1, the content of the explanations
elicited during the inductive learning task had no (or extremely little) shared content with the
material assessed in math and English standardized tests. In Study 2, students reported the
general prevalence of explanatory activities across their academic experience. It thus seems
unlikely that the benefits of explanation stemmed from any particular content that was the
target of explanation. Instead, we suspect that the measures across both studies reflected stu-
dents’ general tendency to engage in explanation, and that this tendency was responsible for
their superior academic outcomes.

Thinking of explanation as a general strategy or metacognitive skill helps explain why
effects may have been both long-lasting and domain-general. Metacognitive skills have been
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identified as critical predictors of long-term outcomes, specifically in relation to academic
achievement (Hinshaw, 1992; Claessens, Duncan, & Engel, 2009; Modrek & Ramirez, 2021).
In a mega study utilizing six datasets totaling over 50,000 children followed longitudinally in
the United States and United Kingdom, metacognitive skills—specifically attention skills—
were found to be one of the strongest predictors of long-term achievement, for both math
and reading (Duncan et al., 2007). Metacognitive skills are also known to transfer (Kornell,
Son, & Terrace, 2007): because they are domain-general, they support potential applications
across contexts, subjects, and tasks (Kuhn & Modrek, 2023; Kuhn & Modrek, 2021; Modrek
& Sandoval, 2020; Stebner et al., 2022).

While prior work has not investigated the distal impacts of explanation on academic
achievement as we do here, it does support the idea of explaining as a metacognitive skill
(Chi, 2000; Chi & Bassok, 1989). Fergusson-Hessler and de Jong (1990) investigated the
study strategies of high- and low-achieving students and found that while both categories of
students engaged in an equal number of study processes, the high-achieving students tended
to use metacognitive strategies (such as explaining relationships), whereas low-achieving stu-
dents were more likely to use superficial processing (e.g., restating). Research also finds that
when learners are prompted to explain, it engages their metacognitive awareness (Mills &
Keil, 2004; Renkl, 1997; Rozenblit & Keil, 2002).

At a practical level, these results have potential implications for education. Both studies
suggest that increasing the frequency of student explanation could have beneficial effects,
consistent with prior work (Ing et al., 2015; Kuhn, Modrek, & Sandoval, 2020). Going
beyond prior work, our results suggest that the benefits could extend to distal academic
achievement. Study 1 additionally suggests that explanation quality might matter, and Study
2 offers hints about how explanatory frequency might be achieved—not only by explic-
itly prompting students to explain, but by having teachers model explanation. In thinking
about implementation, it will be important to identify boundary conditions on these effects
(e.g., Kuhn & Katz, 2009; Williams, Lombrozo, & Rehder, 2013; Legare & Lombrozo,
2014), and to consider the opportunity cost (e.g., Schwartz & Martin, 2004; Schworm &
Renkl, 2019): if teachers and students spend more time explaining, what activities might be
displaced?

A broader agenda of the present work was to identify contributors to distal outcomes.
Psychological scientists long identified self-control as a longitudinal predictor of standard-
ized test scores (Mischel et al., 2011; Shoda, Mischel, & Peake, 1990; Mischel, 2004)—
a conclusion disputed by more recent evidence suggesting self-control does not have a
robust or direct effect on standardized test performance (Watts, Duncan, & Quan, 2018).
For instance, with national samples comprising nearly 20,000 adolescent participants, Bald-
win et al. (2022) found that self-control had no direct relation to state standardized test
performance. They found it was strategies that directly predicted state standardized test
performance (e.g., time spent practicing), and that self-control’s relation to standardized
test performance was fully explained by such strategies. In the current project, we shed
light on mechanisms driving effective learning that contribute to academic outcomes over
time. Specifically, our findings suggest long-term benefits of fostering explanation skills in
learners.
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Notes

1 Note that the explanation items were not derived from a previously validated measure;
instead, they were pulled from a list of items given to participants to assess activity fre-
quency. The items were all highly, significantly correlated with one another (see Table 4).
When we originally pulled all six items that pertained to explanations, they produced a
Cronbach’s alpha of .72, suggesting they captured explanatory frequency reliably. How-
ever, when we divided the items depending on whether they concerned student or teacher
explanations, we did find a lower alpha for the three student explanation items of .54.
Given that we still had theoretical reasons to group these items, and that they are signifi-
cantly, highly correlated with one another, our primary analyses still focus on a compos-
ite score of the three student explanation items. However, to ensure that this composite
did not obscure meaningful variation with respect to our hypotheses, we ran exploratory
analyses on each model with individual student item explanation scores, and found that
each item alone (e.g., “I interpret data and explain what the results mean.”) replicated
our findings with the composite score.

2 In an exploratory analysis, we tested whether imputation was affecting the results. In
this analysis, we dropped all participants who were missing even one item from the
survey response and reran all our models on this subset of the sample. We found the
same results, including consistent results for both math and English. These exploratory
analyses increase our confidence that imputation is not meaningfully influencing our
results.
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