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Cognitive scientists have developed
many accounts of learning fromobserva-
tion, in which the learner gains new
knowledge from observation of the ex-
ternal world.

A relatively neglected form of learning is
'learning by thinking' (LbT) in which learn-
ing occurs without such external input,
as in thought experiments or explaining
to oneself.
Canonical cases of learning involve novel observations external to the mind, but
learning can also occur through mental processes such as explaining to oneself,
mental simulation, analogical comparison, and reasoning. Recent advances in ar-
tificial intelligence (AI) reveal that such learning is not restricted to humanminds: ar-
tificial minds can also self-correct and arrive at new conclusions by engaging in
processes of 'learning by thinking' (LbT). How can elements already in the mind
generate new knowledge? This article aims to resolve this paradox, and in so
doing highlights an important feature of natural and artificial minds – to navigate
uncertain environments with variable goals, minds with limited resources must
construct knowledge representations 'on demand'. LbT supports this construction.
Such instances of learning present a par-
adox: in what sense can 'old' elements in
the mind lead to 'new' knowledge?

Large language models and other forms
of artificial intelligence (AI) exhibit many of
the same capacities for LbT in human
minds.

Across both natural and artificial minds,
LbT reveals important lessons about
how intelligent systems construct repre-
sentations to support novel contexts
and goals.
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The paradox of knowledge from nowhere
Learning is central to cognitive science. A great deal of research has accordingly focused on
‘learning from observation’ – cases in which the learner obtains new information from their senses
(e.g., a visual observation or a speaker's testimony) and updates their mental representations
accordingly. What this focus excludes is less canonical instances of learning that occur within
the mind – a phenomenon called 'learning by thinking' (LbT) [1]. Consider the scientist who
achieves new insight through a thought experiment, the driver who discovers how to navigate
an obstacle through mental simulation, or the writer who learns something new by trying to explain
her ideas. In each case, learning occurs in the absence of novel input from the external world.

Recent evidence from psychology demonstrates the ubiquity of LbT: both children and adults
learn through explanation, simulation, comparison, andmore (e.g., [2–6]). However, the latest ad-
vances in computer science bring the phenomenon of LbT into starkest relief. Consider the fol-
lowing dialogue with GPT-4, a large language model (LLM):

USER: Is 420 60% of 700?

GPT-4: No, 420 is not 60% of 700.

To find 60% of 700:

0.60 × 700 = 420

Actually, I made a mistake in my initial response.

420 is indeed 60% of 700.

In the course of explaining, GPT-4 corrects a misconception to arrive at a correct conclusion –

without any external feedback. Less dramatic illustrations of the same phenomenon include the
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effects of asking LLMs to 'think step by step' [7] or modeling a chain of thought [8], which can lead
to more accurate responses without external correction.

LbT is a paradoxical phenomenon. In one sense, learners gain no new information: they have only
the elements already in their minds to work with. In another sense, learning has occurred: the
agent has acquired new knowledge (such as the answer to a mathematical problem) or new abil-
ities (such as the capacity to answer a new question or draw a new inference). One aim of this
article is to suggest a resolution to this paradox. Another is to highlight the parallels between
LbT across natural and artificial minds, focusing on learning through explanation, simulation,
comparison, and reasoning (Figure 1). Doing so reveals parallel computational problems and so-
lutions across humans and AI: both systems make use of processes that re-represent existing
information to support more reliable inferences. In so doing, LbT processes help resource-
limited systems like us reach relevant conclusions 'on demand' rather than relying exclusively
on the learning that occurs when observations are first made. These ideas are further developed
after first reviewing evidence for LbT.

Four varieties of LbT
This section considers four examples of LbT: learning through explanation, simulation, analogy,
and reasoning. This is not an exhaustive list of LbT processes – there are additional forms of
LbT (such as learning through imagination [9,10]), and these forms of learning could be individu-
ated more finely (e.g., learning through teleological explanation could differ from learning through
mechanistic explanation [11]). The aim here is not to offer a fixed taxonomy of LbT processes, not
least because these processes are likely to share many-to-many mappings to learning goals and
to the underlying structures of attention, memory, and other cognitive mechanisms that instanti-
ate them. Instead, these four processes help illustrate the ubiquity and power of LbT, including
parallels across human minds and AI.
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Figure 1. The varieties of learning. Schematic illustration of different forms of learning. Represented are two canonical
forms of learning from observation, and four examples of learning by thinking (LbT). In each case the learner 'learns' the
new proposition, Q.
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Learning through explanation
In a now classic paper, researchers observed that 'good' students differed from 'poor' students
in how they studied material: the good students spent more time explaining text or examples to
themselves [12]. Subsequent work experimentally manipulated the extent to which students
explained by offering prompts or instructions to explain, and found that engaging in explanation
improved learning, and that the strongest benefits (relative to control groups) were for problems
that required going beyond the material studied [13–15]. This phenomenon is known as the
self-explanation effect, and it is likely to resonate with teachers, parents, and explainers of all
kinds: most people have had the experience of coming to learn something better – or realizing
they do not understand it as well as they thought they did – after trying to explain it [16].

When explaining occurs without external feedback, it offers an opportunity for pure LbT. Such learn-
ing can be broadly classified as corrective or generative: in corrective cases, learners recognize
(and therefore represent) flaws in existing representations; in generative cases, learners construct
entirely new representations. As an example of corrective learning, consider a phenomenon
known as the illusion of explanatory depth (IOED) – people tend to overestimate how well they
understand the workings of devices such asmicrowaves or zippers, but better appreciate the limits
of their understanding after attempting to explain [17]. As an example of generative learning, con-
sider studies in which participants are prompted to explain in the course of learning new categories.
Relative to those in control groups, thosewho explain are more likely to generate abstract represen-
tations [6,18,19] and discover broad patterns in study examples [18,20–23].

Research in AI has employed 'self-explanations' in somewhat analogous ways. Most relevant to
LbT are cases where the AI system benefits from generating an explanation itself. One example
from machine learning is known as 'explanation-based learning', which involves generating ex-
planations for training examples to construct generalizations from limited data [24,25]. Another
example comes from more contemporary work in which deep reinforcement learning agents
learn to predict either the solutions to various tasks, or those same solutions along with natural
language explanations that accompany them [26]. For tasks requiring relational and causal rea-
soning, agents that learned to predict explanations outperformed those that did not, and even
those that received explanations as inputs (versus targets for prediction). In particular, the agents
that predicted explanations were less likely to over-rely on 'easy' features and were more likely to
draw appropriate generalizations from confounded data. In both humans and AI, explaining
seems to support the construction of more generalizable representations.

Learning through simulation
Imagine three interlocking gears arranged horizontally. The gear on the left is rotating clockwise.
What direction is the right-most gear rotating? Most people solve this problem by engaging in
mental simulation [27]: they create a picture in their mind of the three gears, put the left-most
gear in a clockwise motion, and 'observe' the movement of the remaining two gears. More dra-
matic illustrations of the power of mental simulations come from thought experiments in the his-
tory of science: Einstein drew lessons about relativity bymentally simulating travel on photons and
trains [28]; Galileo drew conclusions about gravity by mentally simulating the behavior of falling
objects [29]. As with other forms of LbT, mental simulations and thought experiments can offer
new insights in the absence of novel data external to the mind.

Like explaining, mental simulations can be corrective (used to recognize flaws) or generative (used
to construct novel representations [30]). Illustrating corrective mental simulation, participants in
one study were prompted with thought experiments that were expected to elicit Newtonian intu-
itions about force and motion, whereas other thought experiments were expected to elicit
Trends in Cognitive Sciences, November 2024, Vol. 28, No. 11 1013
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misconceptions associated with an impetus theory [31]. For many participants, these thought ex-
periments successfully elicited inconsistent intuitions. On a subsequent assessment, participants
were less likely to endorse impetus judgments, presumably because the thought experiments led
them to recognize and attempt to correct what had previously been a latent inconsistency. Illus-
trating a generative role for mental simulation, research on causal reasoning suggests that, in
making judgments about whether one event caused another, people engage in a counterfactual
simulation of what would have happened had the first event not occurred [5,32]. For example,
given a visual display in which one ball bumps into another, changing its trajectory such that it
reaches a target that it otherwise would have missed, participant eye movements suggest
that they counterfactually simulate the trajectory that the second ball would have followed
had it not been bumped, and judge the first ball to have caused the second to reach the target
on this basis.

Many contemporary AI systems learn through some form of simulation [33], although simulation
has been a feature of AI models for some time [34]. For example, model-based methods in deep
reinforcement learning can use representations of the environment to generate data that are used
to train a model-free action policy [35–37]. This is analogous to drawing on an intuitive theory for
mental simulation, and subsequently learning from the simulated data (potentially using a different
process such as associative learning or inductive inference). Another example comes from algo-
rithms for selecting the best course of action from a set of nested decisions (as in a decision tree):
one approach is to engage in 'deep imagination', or simulation of a few long sequences of deci-
sions, as a basis for approximating optimal solutions given limited resources [38]. Across both
humans and AI, simulation can offer 'data' that serve as the input to various mechanisms for
learning and reasoning.

Learning through analogical reasoning and comparison
In developing his theory of natural selection, Charles Darwin noticed a potential analogy between
selective breeding and biological evolution. Based on this analogy, he compared themechanisms
of change in each case and drew new inferences about natural selection: in the same way as do-
mestication could result in accidental variation, so too accidental variation might arise in natural
selection [39]. Many such instances of analogical reasoning and comparison have been docu-
mented in the history of science (e.g., [40]) and in scientific problem solving [41]. When a reasoner
already has knowledge concerning the two elements that enter into some comparison or anal-
ogy, comparison or analogical inference can be the basis for novel conclusions or insights,
thus supporting LbT.

Most experimental investigations of comparison and analogical reasoning do not involve pure
LbT. Participants are not solely prompted to engage in analogical thinking but are typically pro-
vided with a particular analogy or exemplars. In such cases, subsequent learning reflects both
the information provided by the researchers (about which analogies or exemplars to consider)
and the analogical thinking itself. However, some studies come close to isolating the effects of
comparison or analogical thinking: in these studies, all participants receive the analogy or exem-
plars, but only some participants are cued to consider the analogy or exemplars in solving a
new problem (e.g., [42]) or are prompted to explicitly engage in comparison across cases
(e.g., [43,44]). These studies find both corrective and generative effects of engaging in these
forms of thinking. For example, a study of mathematical learning found that participants who
received more cues to compare sample solutions were less susceptible to misleading surface
similarity (i.e., the topic of a word problem) in deciding how to solve new problems [45]. Illustrating
generative effects, one study asked participants to identify the similarities and differences be-
tween two groups of robots [4]. Those who engaged in this comparison were significantly
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more likely than those in a control condition to discover a subtle rule that differentiated all mem-
bers of the categories, potentially because they engaged in alignment and abstraction that helped
them re-represent the features of the robots [46].

Analogical reasoning and inference have also been the subject of interest in AI (e.g., [47–49]).
As with human experiments, most demonstrations of analogical reasoning do not involve pure
LbT: more often, AI systems are asked to solve analogical problems that involve source analogies
(e.g., [50]). However, some recent applications do involve prompting systems to engage in
analogical reasoning or comparison without providing the source analogies themselves. For
example, in ‘analogical prompting’, LLMs are prompted to self-generate exemplars that can
then be used in solving new problems [51]. Across a range of mathematical questions, code-
generation tasks, and other reasoning problems, the most effective prompts were those that
requested the LLM to generate three to five relevant but diverse exemplars: each was
described and the solution was explained before the LLM offered a solution to the new prob-
lem. Using this approach (which perhaps combines the benefits of both analogical reasoning
and explanation), analogical prompting out-performed a variety of state-of-the-art benchmarks
for LLM performance (although the effects were not always large). At a coarse grain, this mimics
the effects of comparison prompts observed with both adults and children, although it remains
unclear whether the benefits for LLMs resulted from processes that correspond to those in
humans.

Learning through reasoning
I might know that today is Wednesday, and that on Wednesdays I should avoid parking in a par-
ticular campus lot. However, I might not realize that I should avoid parking in that campus lot
today. Mundane examples such as this illustrate that even trivial inferences can require attending
to the right information and processing it in exactly the right way. That is, despite representing 'P'
and 'if P then Q', drawing the conclusion 'Q' (a simple instance of modus ponens) can require
some form of reasoning – the construction or evaluation of an argument, including the reasons
that support a conclusion ([52]; also [53]). When the conclusion is successfully drawn ('Q'), it
can feel like a new insight. If this example of modus ponens is not compelling, consider more
complex instances of deductive or inductive reasoning. For example, from the premises that
'everyone loves anyone who loves someone' and that 'my neighbor Sarah loves Taylor Swift', it
follows (deductively) that 'Donald Trump loves Kamala Harris' – but this is unlikely to be immedi-
ately apparent [54].

In some cases, simply reasoning, reasoning more, or reasoning better can serve as a corrective
(cf [55]). For example, one study asked participants to evaluate arguments about the solutions to
reasoning problems [56]. Unknown to the participants, the arguments they were evaluating were
in some cases their own that were generated in earlier trials of the same study. About two-thirds
of the time, participants were able to correctly reject their own previous invalid reasoning (and did
so more often than they rejected their own previous valid reasoning). Of course, reasoning can
also be generative: for instance, participants who spend more time reasoning about the answer
to tricky problems from the 'cognitive reflection test' (CRT), such as the 'bat and ball problem', are
more likely to generate the correct response ([57]; also [58]).

Within AI, various forms of reasoning have been realized in traditional symbolic architectures that
implement explicit rules [59] and/or implement probabilistic computation (e.g., [60]). A newer
development is the emergence or elicitation of reasoning (or behavior that ‘looks’ like reasoning)
in deep learning systems such as LLMs [61] (Box 1). For instance, prompting LLMs to explicitly
engage in step-by-step reasoning can lead them to accurate solutions that they fail to reach
Trends in Cognitive Sciences, November 2024, Vol. 28, No. 11 1015



Box 1. Learning by thinking in large language models

LLMs such as OpenAI's ChatGPT are deep neural networks trained on vast quantities of text to generate next-word pre-
dictions. Despite many impressive capabilities, LLMs currently fall short of human-level performance on basic reasoning
tasks such as logic and mathematics problems [91]. These shortcomings have spurred a new wave of efforts to improve
LLM reasoning capabilities through 'prompt engineering' – designing inputs to LLMs that increase the probability of
eliciting desired outputs. Chain-of-thought prompting, an approach that holds particular promise for improving reasoning,
involves LbT.

In chain-of-thought prompting [8], LLMs are prompted with a sample input that includes a series of intermediate reasoning
steps. Performance is compared with 'standard' prompts in which the LLM receives a sample input but without those
intermediate steps. For instance, consider the following example of input in a standard prompt:

Q: Roger has 5 tennis balls. He buys 2more cans of tennis balls. Each can has 3 tennis balls. Howmany tennis
balls does he have now?
A: The answer is 11.

With chain-of-thought prompting, the modeled answer instead includes a chain of thought (indicated in bold):

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11.
The answer is 11.

When so prompted, LLMs perform considerably better on mathematical word problems, commonsense reasoning, and
other tasks.

Why is prompting LLMs to produce intermediate reasoning steps effective? One source of insight comes from comparing
the effects of 'direct prompting' to 'thinking step-by-step' (i.e., with intermediate steps) in models trained on data with dif-
ferent statistical structures ([7]; cf [92]). This approach finds – both analytically and experimentally – that thinking step-by-
step is effective when the training data involve local clusters of related variables, such that variables that were not directly
observed in training can be chained together.

This suggests that chain-of-thought reasoning exploits the accuracy of 'local' inferences to generate better guesses about
distant connections. More precisely, when outputs are conditioned on intermediate inputs that raise the conditional prob-
ability of a correct response, the result is more accurate reasoning. This provides a concrete model for how LbT can
operate in a statistical next-word prediction system – a distinctly ‘un’human kind of mind [93] that may only mimic
human-like reasoning [94,95]. Nonetheless, LLM chain-of-thought prompting and human learning through reasoning
converge in their role for LbT: in both cases, the learner benefits from generating intermediate inputs to thinking that offer
a more reliable path to the desired output.

Trends in Cognitive Sciences
with direct prompts to simply report the solution [8]. The benefits of such step-by-step reasoning
(vs. direct prompts) are larger for more complex problems [8], and become greater still
when LLMs are prompted to ask themselves questions corresponding to intermediate
steps in reaching problem solutions [62]. Although the effects of step-by-step reasoning likely
arise from multiple sources (not all of which are likely to have analogs in human minds), one is
'locality' [7] – when systems perform long-range inferences that require connecting pieces
of information that have not been observed together in training, a direct inference will introduce
greater bias. When systems instead chain together more local inferences, the result is more
accurate conclusions. Systems can also improve themselves by learning from their own
chain-of-thought rationales [63], a type of self-instruction that has long been recognized in
humans [64].

Dissolving the paradox of LbT
We have now seen several instances of LbT across natural and artificial minds. While the opera-
tive mechanisms across cases and types of minds surely differ, the puzzle of LbT is shared. How
can ‘thinking’ be sufficient for ‘learning’?

The poet and playwright Heinrich von Kleist argued for the value of 'learning by speaking’ –
that through the process of articulating our thinking to others, we can lubricate the fabrication
of ideas in 'the workshop of reason' [65]. He also identified the contours for dissolving the
paradox of LbT – 'For it is not we who know, but at first it is only a certain state of mind of
1016 Trends in Cognitive Sciences, November 2024, Vol. 28, No. 11
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ours that knows' (p. 45). On this view, the ‘learning’ in LbT comes from making some knowl-
edge newly accessible to the learner (the ‘we’). The reason thinking is sufficient –without exter-
nal input – is because the basis for that knowledge was already in the mind (or in a 'certain state
of mind').

We can unpack these ideas in more cognitive terms using the case of learning through reasoning.
In the simplest case, the learner combines two premises to support a new conclusion. Although
the conclusion was already deductively implied or inductively supported by the premises, explic-
itly recognizing the conclusion is a cognitive accomplishment: the process of reasoning yields
a representation with affordances that differ from those of the premises in isolation [1,66–68].
For example, when I recognize that ‘today’ is the day I should avoid parking in a particular
campus lot, I am in a better position to direct my actions ('turn left here, not right'), draw further
inferences ('I will need to leave 10 minutes to walk back to my car'), and share information with
others ('park in the east lot!'). Moreover, a process such as reasoning can support learning in a
factive sense (i.e., where ‘learning’ that Q implies that Q is true). This is because deductive and
inductive reasoning are truth-conducive: if the premises are true, the conclusion is guaranteed
to be true (for deduction) or likely to be true (for induction) ([69,70] for more nuanced discus-
sions of deduction and induction).

Recent work has developed these ideas for learning through explanation [1] and simulation [71],
respectively. In these cases, it is less clear what functions as a 'premise' in thinking, and it is
less obvious why the variety of thinking involved would be conducive to learning. An important
observation is that different representations have different affordances. These can be character-
ized in terms of the ‘accessibility conditions’ of a representation ([67,68]. The basic idea is that
cognitive processes operate more or less effectively or efficiently given different types of inputs,
much in the same way as algorithms for addition will operate differently (if at all) depending on
whether they receive input in the form of Arabic or Roman numerals. As a result, a representa-
tional change can have dramatic consequences – for example, once a number in Roman
numerals is re-represented in Arabic numerals, different features become more apparent (e.g.,
whether a number is even or odd) and different algorithms become available. Processes such
as explanation, comparison, and simulation can change the accessibility conditions for represen-
tations and thus support ‘representational extraction’ – the creation of new representations with
new accessibility conditions.

When representational extraction occurs, information that was represented in a proprietary
format or embodied in a process can function as a premise that constrains the output of an
LbT process. Tomake this more concrete, consider the case of explanation. Some research sug-
gests that, when learners engage in explanation, they favor causal structures with fewer 'root
causes' (i.e., causes that are themselves unexplained [72]; also [73–77]), such that they will
treat some causal hypotheses as preferable or more probable than others. A proposition such
as 'explanations with fewer root causes are more probable' thus functions as a premise would
in reasoning, but not one that the explainer would necessarily recognize or exploit in explicit rea-
soning [1,29,72,78]. When the process of explaining yields some output (e.g., a preference for
one explanation over another), the learner gains access to a conclusion that was constrained
by this implicit premise. This process is illustrated in Figure 2, along with an example of learning
through reasoning.

Recognizing the role of accessibility conditions and representational extraction allows us
to generalize the simple story of learning through reasoning to less transparent processes
such as explanation, comparison, and simulation, among others (Box 2). However, why should
Trends in Cognitive Sciences, November 2024, Vol. 28, No. 11 1017
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Figure 2. Learning by thinking (LbT) in action. Two examples of LbT, schematically representing the role of
representational extraction and its consequences for the accessibility conditions of representations. Note that LbT
processes can change multiple representations; for example, explaining might not only result in the explicit
representation of some explanation, Q, but also in the target of that explanation being represented at a different level
of abstraction [6,18].
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we expect the output of these processes to yield new ‘knowledge’ (i.e., learning in a factive
sense)? Of course, there is no guarantee that the conclusions reached through explanation,
simulation, or other LbT processes will be true – indeed, there is no guarantee that the conclu-
sions of inductive reasoning will be true, nor even those of deductive reasoning when the pre-
mises are false. However, to the extent that these processes have been shaped by evolution,
experience, or (in the case of artificial minds) intentional design, we might expect them to at
least partially track the structure of the world, and therefore produce somewhat reliable outputs
[79]. More modestly, even when these outputs are not strictly accurate, they may still prove
useful for guiding thinking and action [80]. One example of this comes from the process of
learning through explanation: even when the explanations generated are false, the process of
explaining can sometimes improve subsequent inquiry and later judgments (e.g., by leading
learners to recognize conflicts between representations, or to represent the domain in more
abstract terms [6,13,81]).
1018 Trends in Cognitive Sciences, November 2024, Vol. 28, No. 11
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Box 2. Rationalization as learning by thinking

Humans often engage in the peculiar activity of rationalization: generating explanations for their behavior that would make
that behavior rational in light of their beliefs and desires. Yet, decades of research suggest that such explanations are often
unfaithful in the sense that they fail to correspond to the causal mechanisms that actually generated the behavior in ques-
tion (e.g., [96,97]). Why then do humans engage in rationalization?

One recent proposal is that it is rational to pursue rationalization: when we generate beliefs and desires that make sense of
adaptive behaviors generated by introspectively opaquemechanisms, we engage in a form of ‘representational exchange’
that extracts useful information from those otherwise opaque mechanisms, rendering that information available to reason-
ing [66]. On this view, representational exchange is 'the process of translating information from one psychological system,
or representational format, into another' (p. 9), and can thus be a basis for LbT.

To illustrate, consider a child who carefully checks inside their shoe before putting it on. The mechanism generating this
behavior could be simple imitation – copying what they have seen a parent or sibling do. However, when someone asks
them why they are checking inside their shoe (or they ask themselves), they generate a plausible response: they are
checking for spiders. If this is in fact the reason that others in their community check their shoes, then rationalization
has led the child to learn something new.

Underlying this approach is the idea that many 'non-rational' processes, such as instinct, conformity to social norms, and
habits, are adaptive: because they are shaped by adaptive processes (biological evolution, cultural evolution, and rein-
forcement learning, respectively), they contain implicit beliefs that may be justified, but are unavailable to other cognitive
systems. For this reason representational exchange can result in new knowledge or learning – not merely the acquisition
of new (potentially false or unjustified) beliefs.

Trends in Cognitive Sciences
Given that different forms of thinking will shape representations in different ways, figuring out
when to rely on such processes is an important meta-reasoning problem that faces natural and
artificial minds alike (e.g., [82,83]). For example, a scientist might learn to discern whether and
when to trust the outputs of mental simulations that rely on intuitive physics [84,85], and a
robot might evaluate whether to continue reasoning or engage in action [86]. That said, the
trade-offs faced by humans and AI are likely to differ in important ways, with implications for
the conditions under which pursuing each process is likely to be reliable and rational. For exam-
ple, a systemwith extremely reliable storage and retrieval might engage in simple recall whereas a
system with nosier retrieval will engage in simulation or reasoning.

So far we have considered how thinking can be ‘sufficient’ for learning (the inputs to learning are
already in the mind of the learner), and how such thinking might result in ‘learning’ (LbT processes
are themselves shaped by evolution, learning, and/or design). Across both natural and artificial
minds, LbT allows agents to capitalize on intermediate processes through which they can arrive
at more reliable conclusions. However, we are left with the question of when and why LbT is
‘necessary’. Would an ideal learner already represent all conclusions upon learning the relevant
premises, rather than needing to think their way to new conclusions as the circumstance
demands? A computational analogy is helpful once again. Within an artificial system, limitations
on memory and processing time will dictate how much anticipatory computation can occur.
Since the implications of current beliefs are boundless, the propagation of error detrimental,
and future needs uncertain, a system needs to be selective in what (and how much) it concludes
from either observation or inference. LbT offers a way to generate new and useful representations
'on demand' [87,88] rather than relying exclusively on learning that has already occurred. We
should therefore expect LbT to be especially common for intelligent agents that (i) face limitations
in terms of time, processing, or other resources [89,90]; and (ii) have uncertainty concerning their
future contexts and goals. In other words, we should expect LbT processes to be especially
pervasive for creatures like us.

These observations generate predictions about the conditions under which natural and artificial
minds might diverge when it comes to the role of LbT. As artificial minds overcome the resource
Trends in Cognitive Sciences, November 2024, Vol. 28, No. 11 1019
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Outstanding questions
When are LbT processes most likely
to support reliable conclusions, and
when do they lead learners astray? To
what extent are these conditions for
reliability similar or different across
types of LbT (explanation, simulation,
etc.) and across natural and artificial
minds?

How do humans and AI systems solve
the meta-reasoning problems of de-
ciding when to engage in LbT versus
other forms of activity (such as explora-
tion) and of deciding which LbT pro-
cess to engage?

How do humans and AI systems learn
to balance the costs and benefits of
immediate computation (e.g., reasoning
about the consequences of a new
observation the moment it is made)
versus those of engaging in later LbT?

What can we learn about how to
improve prompts for LLMs from
research in psychology on LbT? What
can the success of LLM prompting
tell us about how to engage in 'prompt
limitations faced by human minds, or when artificial minds face problems involving lower uncer-
tainty concerning future contexts and goals (perhaps because they operate within a very narrow
domain), we should expect greater departures between natural and artificial minds in the role
of LbT.

Concluding remarks
LbT is ubiquitous: humans learn not only through observation but also through explanation,
comparison, simulation, reasoning, and beyond. Recent developments reveal that AI systems
can also learn in these ways. In both cases we can resolve the paradox of LbT by recognizing
that representations can vary in their accessibility conditions; through LbT, representations
with novel accessibility conditions can be extracted and put to use to yield new knowledge and
abilities.

In one sense, LbT reflects cognitive limitations: a system with unlimited resources and limited un-
certainty would be able to work out the consequences of observations as they occur. By con-
trast, natural and artificial minds face limited resources and considerable uncertainty about
what will be relevant to future judgments and decisions. In such cases, LbT offers a way to sup-
port 'on demand' learning that capitalizes on the strengths of existing representations (Box 1) in
the context of the agent's current situation and goals. However, many questions remain open
about how LbT processes are implemented in natural and artificial minds, including how they
contribute to human intelligence (Box 3) and when they might lead us astray (see Outstanding
questions). Learning the answers to these questions will ultimately require more than merely
thinking – it will take the full, interdisciplinary toolkit of cognitive science.
Box 3. Is learning by thinking uniquely human?

Annette Karmiloff-Smith introduced the important idea of ‘representational redescription’, which she characterized as
'basically a hypothesis about the specifically human capacity to enrich itself from within, by exploiting knowledge already
stored rather than by simply exploiting the human and physical environment' ([98], p. 706; also [99]). In the vocabulary of
this article, representational redescription offers a basis for LbT.

Karmiloff-Smith positedmultiple levels of knowledge representations, ranging from those contained implicitly within proce-
dural knowledge (level I), to representations of that procedural knowledge that can be used as data to the system (level E1),
to consciously accessible representations (level E2), and finally to representations that are available in a domain-general
code that supports verbal report (level E3). The process of representational redescription involves re-representing knowl-
edge representations at increasingly higher levels, leading to greater representational manipulability and flexibility. As chil-
dren 'spontaneously seek to understand their own cognition' ([98], p. 706), they engage in representational redescription
and obtain the representational sophistication that ultimately supports intuitive theories of the world.

Karmiloff-Smith also speculated that representational redescription is uniquely human (while recognizing the limitations of
extant data): 'in the human, internal representations become objects of cognitive manipulation such that the mind extends
well beyond its environment and is capable of creativity' ([98], p. 706).

As a hypothesis about what differentiates humans from non-human animals, representational redescription (and LbTmore
generally) has two attractive features. First, the capacity for representational redescription admits of degrees – for example,
it could be that rats engage in mental simulations that generate representations at Karmiloff-Smith's level E1, and that
some primates can go beyond E1 but without achieving the perhaps uniquely human level E3 (that supports verbal report).
Second, representational redescription arguably subsumes other common claims about human uniqueness. For example,
language is often touted as uniquely human and corresponds to level E3, the level at which we see domain-general
representations that readily translate to linguistic encoding. Another hypothesis is that humans are unique in their capacity
for relational or analogical reasoning [100], an ability that requires the type of abstraction that begins to emerge at level E1.

Although Karmiloff-Smith focused on the contrast between human and non-human animals, she also entertained the
possibility that representational redescription could be captured in connectionist networks. She ultimately concluded that
the connectionist networks of the 1980s and 1990s fell short in a number of ways, but her analysis raised the possibility
that representational redescription might be realized in future forms of AI.
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engineering' for humans?

How do learning through observation
and LbT work together to support
intelligent behavior? What can the
study of LbT teach us about the role of
mental processing in shaping learning
in canonical cases of learning from
observation? To what extent does LbT
involve the same mechanisms as
learning from observation, albeit with
internally generated observations such
as thoughts and mental imagery?
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