
BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 1 

 

 

 

 

Building Compressed Causal Models of the World 

David Kinney1 and Tania Lombrozo2 

1Department of Psychology, Yale University 

2Department of Psychology, Princeton University 

 

 

 

Author Note 

We have no known conflict of interest to disclose. We are grateful to audiences at the Santa Fe 

Institute and the 2022 annual meeting of the Cognitive Science Society for feedback on earlier 

drafts of this paper. A subset of the theoretical framework and of Experiments 1-2 contained in 

this paper were presented at the 2022 annual meeting of the Cognitive Science Society and 

published in the proceedings thereof (Kinney, D., & Lombrozo, T. (2022). Evaluations of Causal 

Claims Reflect a Trade-Off Between Informativeness and Compression. In Proceedings of the 

Annual Meeting of the Cognitive Science Society (Vol. 44, No. 44), pp. 621-27). All data used 

herein are available at: https://osf.io/zm6kr/?view_only=9c9d62bf278d420fbff5a12e9ab32d42. 

 

  

https://osf.io/zm6kr/?view_only=9c9d62bf278d420fbff5a12e9ab32d42


BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 2 

Abstract 

A given causal system can be represented in a variety of ways. How do agents determine which 

variables to include in their causal representations, and at what level of granularity? Using 

techniques from Bayesian networks, information theory, and decision theory, we develop a formal 

theory according to which causal representations reflect a trade-off between compression and 

informativeness, where the optimal trade-off depends on the decision-theoretic value of 

information for a given agent in a given context. This theory predicts that, all else being equal, 

agents prefer causal models that are as compressed as possible. When compression is associated 

with information loss, however, all else is not equal, and our theory predicts that agents will favor 

compressed models only when the information they sacrifice is not informative with respect to the 

agent’s anticipated decisions. We then show, across five studies reported here (N=1,964) and three 

studies reported in the supplemental materials (N=789), that participants’ preferences over causal 

models are in keeping with the predictions of our theory. Our theory offers a unification of different 

dimensions of causal evaluation identified within the philosophy of science (proportionality and 

stability), and contributes to a more general picture of human cognition according to which the 

capacity to create compressed (causal) representations plays a central role. 

 

Keywords: Bayesian networks, compression, causal models, proportionality, stability, 

value of information. 
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Introduction 

Scientists often aim to produce causal models of the world that balance informativeness 

with compression. That is, they aim to model data-generating processes in a way that captures as 

much information about those processes as possible, while omitting cumbersome or unnecessary 

details. For example, epidemiologists might produce a model of cancer rates in a population that 

treats smoking as a binary variable representing whether or not a person smokes cigarettes, but 

without specifying the average number of cigarettes the person smokes per day, and omitting 

additional background variables such as the person’s blood type. Ordinary agents face an 

analogous challenge: in representing the social and physical world around us, each of us must 

determine which variables to include in our causal models, and at what level of granularity. For 

example, a causal model of a toddler’s tantrums could include whether they napped or not as a 

binary variable, or a finer-grained specification of the number of minutes they napped; it could 

include the time of day, or omit this variable entirely. Any such choice of variables instantiates a 

particular trade-off between informativeness and compression. How do people navigate this choice 

in building causal models of the world? 

In this paper, we begin from the premise that ordinary agents, like scientists, build causal 

models of the world, and that these causal models can be represented formally as Bayesian 

networks (Gopnik and Tenenbaum, 2007; Griffiths et al., 2008; Pearl, 2000; Spirtes et al., 2000). 

We then argue that these ordinary agents, like scientists, face a crucial problem: choosing which 

variables to include in their causal models. Using the Bayes net formalism and a decision-theoretic 

framework, we provide a formal theory of how to choose variables for a causal model so as to 

achieve an optimal compression of the environment. We then corroborate our formal framework 

over the course of five experiments. 
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A Bayes Net Perspective on Variable Choice 

 In a Bayesian network, types of events are represented by random variables. These random 

variables are then related to each other by functions that represent the causal relationships between 

types of events. For instance, in our epidemiological example, a binary variable representing 

whether or not a person gets cancer will have its value determined by a function that takes as one 

of its arguments the value of a binary variable denoting whether or not someone smokes.  

By definition, each random variable in a Bayesian network can also be represented as a 

function defined on a set representing all of the possible states of the network’s target system. We 

typically assume that these functions are many-to-one (i.e., that they are surjective but not 

injective), such that random variables can be understood as compressions (often, massive 

compressions) of possibility space. For the same data-generating process, there are many different 

sets of variables that we can define on possibility space, and each choice of variables leads to a 

different causal model.1 For example, one model could use a binary variable for a person’s smoker 

status; another could include a variable representing the total number of cigarettes smoked in a 

person’s life. In this case the former model is more compressed, but the latter is more informative. 

However, the more informative model is not always the superior model. In some cases, it may be 

no better-supported by the data than more compressed models, or the additional information that 

it encodes could be irrelevant in a given context. For instance, an epidemiologist will likely be 

uninterested in whether smokers are more likely to smoke with their right or left hand.  Given these 

considerations, which model should be used in a given modelling context? 

 
1 Note that we do not assume here that there is a unique, most fine-grained representation of a given data-generating 
process. Rather, we take the fundamental nature of a data-generating process to be represented by a probability 
space, with respect to which the random variables in a causal model are measurable. See Appendix A for more 
details on how the variables in a causal model are defined with respect to a probability space. 
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In philosophy of science, the question of how to make choices about which variable set to 

use when representing some system has been termed the “variable choice problem” (Woodward, 

2016b). More precisely, the variable choice problem is the problem of determining which 

normative standards allow us to distinguish between appropriate choices of variables and 

cumbersome, unnatural choices of variables in contexts where empirical adequacy does not on its 

own vitiate in favor of one variable set or another. In this paper, we are especially concerned with 

versions of the variable choice problem that introduce a trade-off between compression and 

informativeness. As we discuss in the next section, this is a trade-off that arises across a number 

of areas in cognition and beyond.  

The Case for Compression 

The importance of compression for understanding one’s environment is well-established 

within cognitive science. Rosch (1978) argues that classifying types of objects or events in one’s 

environment requires one to balance the need for informative classification (i.e., maximal 

informativeness, which introduces pressure towards fine-grained categories) against a need for 

“cognitive economy” (i.e., less demanding representations, which introduces a pressure towards 

coarser representations) (see also Chater and Vitányi, 2003). This pressure towards cognitive 

economy in classification can be understood as a pressure towards compressed representations of 

one’s environment, where this includes causal representations (see also Fauconnier and Turner, 

2008; Murphy, 2004). Keil (2006) argues further that understanding how agents achieve optimal 

levels of compression in causal representations of their environment is crucial for understanding 

how those agents explain observed events. For example, if an agent knows that failing to discard 

old food attracts pests, then that agent can exploit their knowledge of this causal relationship to 

explain the presence of pests when it occurs, and to intervene on their environment to avoid 
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attracting pests in the future. This agent does not need to separately store a complex causal model 

of the relationship between different types of food (e.g., grains, vegetables, or meat) and the 

presence or absence of pests. Thus, compression allows for the recognition of high-level patterns 

of causal dependence; this accounts for the central role that compression plays in more general 

cognitive processes such as sense-making and understanding (see also Kirfel et al., 2021; Marzen 

and DeDeo, 2017; Pacer and Lombrozo, 2017; Wilkenfeld, 2019; Wojtowicz et al., 2021). Finally, 

Waldmann and Hagmayer (2006) show that people not only group objects together when they infer 

that they have similar causal effects, but also assume that objects have similar causal effects once 

they have been grouped together (see also Buchsbaum et al., 2015; Gopnik and Sobel, 2000).  

In sum, there is a psychological and philosophical consensus that compression and causal 

explanation are closely related, and that our choice of variables for causal models often involves a 

trade-off between informativeness and compression. However, what is missing from this 

discussion is a precise quantification of the trade-off between informativeness and compression in 

Bayesian networks, as well as a systematic treatment of the value of the information contained in 

a Bayesian network for a given agent in a given context.  

Outline of a Theoretical Framework and Empirical Hypotheses 

Here, we provide a formal theory that quantifies the trade-off between compression and 

information loss that is often inherent in choices between variable sets in causal modeling. We 

then test this foundational framework empirically. Next, we show how this trade-off can 

additionally incorporate considerations about the value of information, reflecting the fact that not 

all information is equally valuable for a particular agent facing particular decisions. This allows 

for more compressed causal models that, though they sacrifice informativeness relative to some 

more detailed model, are nevertheless optimal for a given agent in a given context, because the 
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information lost in compression has no decision-theoretic value for the agent who uses the model 

to explain and intervene upon their environment. Having developed this more detailed formal 

framework, we also test it experimentally.  

Importantly, on the picture of causal cognition that we use in this paper, we do not 

presuppose that agents generate a single, complete causal representation of their environment from 

raw data. Rather, we take it that agents approach their environment with a fragmented and revisable 

picture of the causal structure of the world. When asked to engage in explicit causal reasoning 

(e.g., when asked to evaluate the quality of a causal claim, or to generate a causal explanation or 

description based on data), agents refine this fragmented causal structure and make salient a 

specific, better-defined causal representation of their environment. 

Based on our formal framework, and with this picture of flexible causal representation in 

the background, we obtain evidence consistent with the following three hypotheses:  

H1: In general, people treat compression as a positive feature of a causal representation; 

all else being equal, the more compressed a given representation is, the better.  

H2. Compression can come at the cost of informativeness, and so, all else being equal, the 

optimal causal representation will achieve a balance of compression and informativeness.  

H3: When people are asked to select a causal representation in the context of a particular 

decision problem, their tolerance for information loss in achieving a more compressed 

causal claim is moderated by the decision-theoretic value of the information that is lost. 

That is, when the information that is lost in moving to a more compressed causal claim is 

not decision-relevant, that information can be sacrificed without sacrificing the overall 

quality of a causal representation. 
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The remainder of the paper proceeds as follows. First, we review prior work (primarily from 

philosophy) on two questions about variable choice with implications for the compression of 

causal claims. These questions concern the granularity of selected variables (this is reflected in a 

claim’s so-called “proportionality”) and the choice of which variables to include (this is reflected 

in a claim’s so-called “stability”). We then introduce a way to formalize both proportionality and 

stability in terms of the amount of information lost in the move from one causal model to another. 

This framework allows us to test our first two hypotheses (H1 and H2) empirically, which we do 

in Experiments 1-2. We also demonstrate how the results of Experiment 2 speak against an 

alternative interpretation of our results in terms of the causal power theory adumbrated in Cheng 

(1997). In Experiment 3, we rule out an alternative interpretation, showing that a causal contrast 

theory due to Lien and Cheng (2000) does not predict results that our formal theory is able to 

successfully accommodate. 

Next, we consider how trade-offs between informativeness and compression are moderated 

by an agent’s interests. In particular, information loss could be irrelevant to an agent in a given 

environment if the lost information would not affect their decisions. Addressing such cases 

requires extending our formal framework to incorporate the decision-theoretic value of 

information. After introducing the relevant theory and formalization, we again turn to human 

judgments to test our third hypothesis (H3) in Experiments 4-5. Specifically, we test the effect of 

the value of information on the trade-off between informativeness and compression in the 

evaluation (Experiment 4) and representation (Experiment 5) of causal claims.  

Taken together, the paper makes the following novel contributions. On a theoretical level, 

our framework offers a novel, formal measure of the information lost in moving from one causal 

model to another, whether that loss is realized through changes in proportionality or stability. In 
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so doing, our framework offers the first unified account of two dimensions of causal evaluation 

(proportionality and stability) that have previously received independent treatment. Our 

formalization also allows us to incorporate the decision-theoretic value of information, resulting 

in a new solution to the variable selection problem in building causal models. Empirically, we 

offer novel evidence that humans trade off informativeness and compression in evaluating causal 

claims, and moreover that the evaluation and production of causal claims is sensitive to the 

decision-theoretic value of information. We find no evidence that these trade-offs are handled 

differently when compression is achieved through changes in proportionality versus stability, 

lending empirical support to our formal unification. Finally, our findings contribute to a more 

general picture of human cognition as balancing tradeoffs between informativeness and 

compression in context-sensitive ways that take into account the value of information for a given 

agent in a given context. 

Dimensions for Comparing Causal Claims Across Compressions 

On its own, the Bayesian network approach to causal representation treats causation as a 

binary relation; two variables are either causally related or they are not, and so the corresponding 

causal claim (e.g., “smoking causes cancer”) is either appropriate or it is not. However, we take it 

that one can nevertheless make graded distinctions between causal claims along a large number of 

different dimensions, in keeping with experimental work on causal judgement (e.g., Cheng, 1997; 

Gerstenberg et al., 2021; Icard et al., 2017; Lombrozo, 2007, 2010; Morris et al., 2018; O’Neill et 

al., 2021, 2022; Quillien, 2020; Spellman, 1997). In our framework, we consider two dimensions 

along which causal models can vary, corresponding to the following two questions about variable 

choice in building a causal model: i) At what level of granularity should a variable be defined?, 

and ii) Which variables should be included in a causal model? 
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These two questions correspond to two graded dimensions that have been discussed in the 

philosophy literature on causation, especially by Woodward (2008, 2010, 2016, 2021a, 2021b), 

though by others as well (e.g., Bourrat, 2021; DiMarco, 2021; Franklin-Hall, 2016; Gebharter and 

Eronen, 2021; Harbecke, 2021; Hoffmann-Kolss, 2014; List and Menzies, 2009; Ross, 2015; 

Weslake, 2013). These dimensions are proportionality and stability. A causal claim’s 

‘proportionality’ depends on the extent to which it is informative about how possible changes to 

the cause would result in changes in its effect. Since coarse-graining or refining variables that stand 

in causal relationships to one another can change the proportionality of causal claims, the concept 

of proportionality offers a partial answer to the question, “at what level of granularity should a 

variable be represented?” By contrast, ‘stability’ refers to the degree to which a causal relationship 

is insensitive to changes in the values of unspecified background variables, and thus offers a partial 

answer to the question, “which variables should be included in a causal model?” Below, we 

describe both proportionality and stability in greater detail. 

Proportionality 

Proportionality is described by Woodward as the degree to which a causal claim of the 

form ‘C causes E,’ where C and E are variables in a causal structure, is stated at the “level [of 

causal description] that is most informative about the conditions under which the effect will and 

will not occur’’ (2021a, p. 389). For Woodward, the hierarchy of levels of description with which 

a causal relationship can be stated corresponds to a sequence of “vertically” related causal 

variables, where each causal variable in the sequence is a coarsening of the previous causal 

variables (2021a, p. 371). The standard example of a hierarchy of levels of description that differ 

with respect to their proportionality comes from Yablo (1992). Consider a pigeon who has been 

trained to peck at all and only red targets. In a causal model of a system containing this pigeon and 
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various targets, one might have a variable C with the range of values {red target, non-red target}, 

and another variable E with the range of values {pigeon pecks, pigeon does not peck}. To be an 

accurate representation of the underlying data-generating structure, the model would have to be 

such that C is a cause of E. However, one could also generate a causal model in which C is replaced 

with a variable C¢  with the range of values {scarlet target, non-scarlet red target, non-red target}. 

Here, accuracy would also demand that we say that C¢ is a cause of E, since some changes in the 

value of C¢  lead to changes in the value of E; changing C¢  from either of its first two values to its 

third, and vice versa, leads to changes in the value of E.  

According to Woodward’s definition, the claim ‘C causes E’ has the same level of 

proportionality as the claim ‘C¢ causes E.’ This is because a function specifying how changes in C 

bring about changes in E would give an agent all the information that they need to appropriately 

manipulate the effect, as would a function specifying how changes in C¢ bring about changes in E. 

However, ‘C causes E’ achieves a more compressed representation of the data-generating process 

than ‘C¢ causes E.’ This is because C is a coarsening of C¢. That is, it defines a strictly more general 

equivalence class on possibility space: any scarlet target or non-scarlet red target is still a red target. 

So, to the extent that we aim to optimize proportionality in our causal representations, we are 

licensed to use compressed representations when those compressions do not result in a reduction 

in proportionality, as argued in Woodward (2021b).2 If the pigeon had instead been trained to peck 

at scarlet targets (and not other red targets), then the claim ‘C¢ causes E’ would be more 

 
2 In Yablo’s original paper, as well as in earlier work on this topic by Woodward (2010), the definition of 
proportionality was such that the variable with the range of values {red target, non-red target} would be said to be a 
more proportional cause of the variable with range of values {pigeon pecks, pigeon does not peck} than the variable 
with range of values {scarlet target, non-scarlet red target, non-red target}. However, as Woodward (2021a) notes, 
the amount of information that the value of either of these causal variables conveys about the value of the effect 
variable is equal; specifying the value of either causal variable tells us what the value of the effect variable would 
be. For this reason, we follow the later Woodward in treating the two variables as equally proportional, with this 
licensing the choice of the more coarse-grained variable. 
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proportional than ‘C causes E,’ because the former would be more informative about the conditions 

under which the effect will and will not occur (i.e., that it will occur for red targets that are scarlet, 

but not for red targets that are not scarlet).  

 When testing the influence of proportionality in people’s evaluations of causal claims, it 

makes sense to consider causal models in which compression is achieved by coarsening the range 

of a particular causal variable. Consider a causal claim C¢ ® E that is embedded within a given 

causal model. If we replace C¢ with a coarsening C, but leave the rest of the model unchanged, 

then we compress the model by replacing a variable with its coarsening. We can then assess how 

much information about the likely value of E is conveyed by changes in C in this more compressed 

model, as compared to how much information about likely values of E is conveyed by changes in 

C¢  in the less compressed model. This tells us how proportional the claim C ® E is, as compared 

to the claim C¢ ® E. Thus, evaluations of the relative proportionality of causal claims involve 

comparisons of more and less compressed causal models of the same data-generating process. In 

what follows, this idea will be made mathematically precise. 

To date, little empirical work has considered proportionality as a relevant dimension in 

people’s evaluations of causal claims. Of most direct relevance, Lien and Cheng (2000) offer 

evidence that agents prefer proportional causal claims. Specifically, they show that people prefer 

to give causal explanations that “explain as much as possible with as few causal rules as possible,” 

(p. 88). By “causal rules,” they mean mappings from values of a causal variable to values of an 

effect variable. This preference for less informationally detailed causal relations tracks a 

preference for more coarse-grained explanations in cases where fine-graining only serves to 

complicate the description of the relation between cause and effect. Thus, they find that agents 

prefer just those kinds of coarsenings that are licensed by a preference for more proportional causal 
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claims. However, their work does not address the question of whether and how judgments of more 

or less proportional causal claims instantiate a trade-off between compression and informativeness. 

In other relevant work, Bechlivanidis et al. (2017) report a preference for concreteness over 

abstraction in causal explanation (i.e., people favor explanations with finer-grained variable 

choices), even in cases where such concreteness does not add any information that would be 

relevant for predicting the effect in question. While this suggests that people may ignore 

compression in favor of greater detail under some conditions, their task involved evaluating causal 

explanations for token events, not type-level causal claims (see also Aronowitz and Lombrozo, 

2020, for potentially relevant discussion). We take explaining why a particular event happened to 

be a cognitively distinct task from identifying patterns in the causal relations between types of 

events, such that the norms governing the former might be different from those governing the 

latter.3 Our focus here is on the latter cognitive task.  

Stability 

Stability is the extent to which a causal claim is sensitive to changes in unspecified 

background conditions (Woodward, 2010).4 As an example of a highly stable causal relationship, 

consider “smoking causes lung cancer.” Across a wide range of plausible changes to other features 

of the world, people who smoke are more likely to get lung cancer than those who do not, and this 

statistical association is due to a causal relationship between smoking and lung cancer. By contrast, 

 
3 This is not to say that these tasks are entirely unrelated. For example, seeking an explanation for a particular event 
might lead someone to identify patterns in the causal relations between types of events, and beliefs about such causal 
relations surely constrain explanations for particular events. Our point here is simply that finding a preference for 
more detailed descriptions in some explanations for particular events does not imply a preference for finer-grained 
specifications of type-level causal relationships. 
4 By “unspecified” background conditions, we mean those conditions that are not explicitly part of the causal 
relationship. E.g., the stability of the claim “smoking causes lung cancer” depends on its persistence across changes 
in whether a person also lives in a high-air-pollution environment, but the stability of the claim “smoking and living 
in a high-air pollution environment causes lung cancer” does not, since in the latter case the amount of air pollution 
in the environment is specified in the causal claim. 
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consider Woodward’s example of a binary variable C representing whether or not a person has a 

particular genetic mutation that typically results in dyslexia, and another binary variable E 

denoting whether or not that person eventually learns to read. Suppose that there is widespread 

failure to address and correct early reading failures in dyslexic children. Under these conditions, 

the causal claim ‘C causes E’ would hold; the presence or absence of the genetic mutation would 

lead to changes in the likelihood of a person learning to read. However, this claim is highly 

unstable. If we alter the background conditions so that dyslexia is treatable and is treated (as, in 

fact, it often is), then the causal effect of the genetic mutation on the probability of one’s learning 

to read is greatly diminished. 

When we compress a causal model by removing a set of variables, we can regard the 

removed variables as background conditions, and assess the stability of the causal relationships 

that remain after compression by observing how well they are preserved even as background 

conditions are removed. Whether a variable is designated as a background condition as opposed 

to a causal variable of interest is ultimately a distinction that we impose on the model, rather than 

one that is dictated by the nature of the system being modelled. That is, we can stipulate that a 

particular relationship C ® E in a causal model is of interest, and designate other variables in the 

model as background conditions.5 We can then assess the stability of the relationship C ® E by 

compressing the model in which it is embedded so as to remove the background conditions, and 

then measuring the degree to which changes in the value of C still result in changes in the 

probability distribution over E. Thus, as in the case of proportionality, we can measure the stability 

of a causal claim by comparing how much information about the likely value of the effect variable 

 
5 See Watson and Silva (2022) for an example from the machine learning literature in which background and 
foreground causal variables are distinguished by stipulation, with fruitful results. 



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 15 

is conveyed by changes in the causal variable when the claim is embedded in a more or less 

compressed causal model. This too will be made more mathematically precise in what follows. 

Prior work offers some direct evidence that people favor causal claims that are more stable 

over those that are less stable. Specifically, Vasilyeva et al. (2018) provide evidence that people 

prefer more stable causal claims even when other dimensions of causal variation (such as causal 

strength) are carefully controlled. As with proportionality, however, this empirical work does not 

address the question of whether and how judgments of more or less stable causal claims instantiate 

a trade-off between compression and informativeness.  

In sum, both proportionality and stability can be assessed by comparing how informative 

changes in a causal variable are with respect to likely values of an effect variable across more or 

less compressed causal models in which the cause-effect relationship is embedded. This suggests 

that proportionality and stability are actually two species of the same genus. That is, both 

proportionality and stability are measures of how much information a causal relationship preserves 

across different types of compression. To test this hypothesis, in our experiments we manipulate 

whether participants are put in scenarios in which a compression of the implicit causal model 

involves coarsening a causal variable or eliding a background condition. Across all five 

experiments, we find no evidence that participants’ evaluations and generations of causal claims 

are affected by whether compression involves coarsening a causal variable or eliminating a 

background condition. Thus, our unified analysis of proportionality and stability is in keeping with 

the findings of our experiments, but represents an important departure from prior work within 

philosophy, which has sometimes aimed to offer a formalization of stability and/or proportionality 

(e.g., Pocheville et al., 2017), but without offering a unifying framework for both. 
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Formalizing Information Loss Due to Compression 

 In this section, we formalize our notion of information loss due to compression, and how 

it can be used to evaluate both the proportionality and the stability of causal claims. (Our 

formalization here is given at a relatively high level of abstraction; see Appendix A for a more 

complete presentation in the language of graphical causal models.) As a preliminary point, note 

that both a set of causal variables C and an effect variable E are random variables measurable with 

respect to the same probability space. Moreover, we assume that both random variables are situated 

within a Bayesian network. That is, there is an acyclic set of directed edges connecting the random 

variables, representing causal relationships between them. Importantly, this graphical structure 

satisfies the Markov condition with respect to the probability distribution over the variables in 

the graph: all variables are independent of their non-descendants, conditional on their parents. This 

setting allows us to calculate the probability distribution over E given each possible intervention 

setting a set of variables C to each of its possible sets of values, in the style of Pearl (2000). We 

denote the probability that E takes a value e, given that C is set to a vector of values c via 

intervention, using the notation . We define the causal mutual information between 

C and E as follows: 

 

where q is a probability distribution over possible interventions on C.6  

 We aim to define a lexical notion of compression that allows us to meaningfully state that 

one set of variables  is more compressed than another set C. Intuitively, we want the relation 

between more and less compressed variable sets to imply that any distinction captured in the more 

 
6 The idea of a probability distribution over possible interventions is non-standard, though it does have some 
precedent in the causal inference literature (Pearl, 1994). In particular, it is necessary to define the information 
capacity of a causal channel in a way that incorporates an interventional understanding of causation (Ay and Polani, 
2008). 
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compressed variable set  is also captured in the less compressed variable set C, but that C can 

contain distinctions that are not captured in .	To this end, we begin by noting that for any set of 

causal variables C, we can define a surjective but not injective compression function  from the 

range of C into another set. This yields a set of variables  whose set of possible values is the 

range of the function . Going forward, we will say that such a variable set  is a compression of 

C. We stipulate that for any vector of values , the probability  is given by the equation 

. Importantly, any probability distribution q over interventions and any other 

probability distribution p must satisfy the constraint that . 

In other words, the probability that E=e given a coarse-grained intervention setting  to  is given 

by the average, according to q, of each interventional conditional probability  for each 

. Having made these stipulations, we arrive at a lexical, comparative measure of 

compression: one set of variables  is more compressed than another set C if there is a surjective 

but not injective compression function  from the range of C to the range of .7 In Appendix A, 

we define the compression relationship between variables more rigorously, but the definition here 

is sufficient for expositional purposes. 

 
7 On this lexical measure, it only makes sense to say that one set of variables is more/less compressed than another if 
the first is a compression of the second or vice versa. We deliberately do not provide a more general measure of 
compression as such a measure will invariably vitiate on questions not directly relevant to our interests here. For 
instance, a measure of how compressed the variable set C is that uses the entropy of C will be sensitive to the prior 
distribution over C, but it is unclear why the likelihood that different values of C occur should be relevant to how 
compressed C is. On the other hand, if we measure how compressed C is by simply counting the number of variable 
combinations, we lose the ability to say (for example) that a countably infinite discretization of the unit interval results 
in a more compressed representation. Ultimately, we are interested here in agents’ preferences between nested 
representations of the same causal processes, and so we leave to one side a more general measurement of compression. 
We believe that comparisons between nested representations deserve special attention, since our choices between 
different nested representations ultimately determine whether or not any two events observed in our environment 
should be treated as instantiations of the same causal kind. 
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 We are now in a position to define the amount of information about an effect variable that 

is lost in the move from a less compressed to a more compressed set of causal variables. We define 

this quantity as follows: 

 

Thus, the amount of information about E lost in the move from the less compressed causal 

representation 𝑪 to the more compressed representation  is equal to the difference between the 

causal mutual information that 𝑪 provides about E and the causal mutual information that  

provides about E. In what follows, we will use this equation to derive qualitative predictions about 

when people will prefer more or less compressed causal representations of their environment, 

which we then confirm experimentally.  

We focus on qualitative comparisons between participants and our model because our goal 

is to understand the conditions under which people prefer more compressed causal representations 

of their environment, and our measure provides a principled basis for tractably deriving 

predictions. Our aim is not to directly model the mechanisms by which people estimate 

compression, and so we leave open the possibility that other measures of compression can be used 

to derive similar predictions, and may offer more plausible accounts of human cognition at an 

algorithmic level. Having said this, in what follows we will note some respects in which salient 

rivals to our framework are less able to explain our data.   

Measuring Proportionality Using Information Loss 

Having formalized information loss due to compression, we can apply our framework to 

the compression achieved by replacing a causal variable C with a more compressed variable  and 

leaving all other variables unchanged. By comparing the amount of information that C 

communicates about some effect variable E to the amount of information that  communicates 
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about the same variable E, we can measure the amount of information that is lost in this 

compression. This corresponds to a comparison of the causal claims ‘C causes E’ and ‘  causes 

E’ with respect to their proportionality.  

More precisely, let be a sequence of causal variables, with each  a 

compression of all variables . We then say that, in the context of such a sequence, a variable 

 is proportional with respect to an effect variable E to the extent that  is 

relatively small for all . That is, proportional choices of causal variables are those that preserve 

information about the conditions under which an effect variable E will change, as compared to less 

compressed alternatives. Note that in this paper we only consider comparisons of proportionality 

between causal claims with different causal variables and a common effect variable, though one 

can in principle compare causal relationships that differ with respect to both cause and effect in 

terms of proportionality. We expect that our use of information loss to measure proportionality 

generalizes to such comparisons.8 

Measuring Stability Using Information Loss 

Our formalization of information loss due to compression can also be applied to 

compressions achieved through the omission of background variables. Recall from our earlier 

discussion that we can measure the stability of a causal relationship  embedded in a particular 

causal Bayes net by removing a set of variables  from that Bayes net and assessing how much 

information is lost in the move from the original Bayes net to the Bayes net that is created by 

removing the background variables. We stipulate that the variables in a set B are background 

variables with respect to a causal relationship  if and only if removing all variables in B and 

 
8 Specifically, one could measure the difference between the difference , where  is a 
compression of E.  
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all edges going into or out of the variables in B creates a Bayesian network that still satisfies the 

Markov condition. The notion of causal stability can now be made precise, using our proposed 

measure of information loss. Specifically, we will say that the causal relationship between C and 

E is stable with respect to background condition  to the extent that the value of   

is low. That is, the relationship  is stable with respect to  to the extent that the average 

amount of information about E that is communicated by interventions on both C and the variables 

in  is similar to the average amount of information about E that is communicated solely by 

interventions on C. 

Relationship to Existing Approaches 

 Our framework is not the first to use information theory to quantify properties of causal 

relationships. Previous work in this vein includes specific attempts to measure proportionality and 

stability (Pocheville et al., 2017), as well as attempts to measure other properties of causal 

relationships, such as power, abstraction, strength, or specificity using formalism from information 

theory (Ay and Polani, 2008; Beckers and Halpern, 2019; Bourrat, 2021a, 2021b; P. E. Griffiths 

et al., 2015; Hoel, 2017; Korb et al., 2011). Moreover, our account of information loss can be 

understood as a version of rate distortion theory (Sims, 2016; Zaslavsky et al., 2018), which has 

been applied to discrete categorization of stimuli and working memory, though not (as far as we 

know) to causal representation. On this interpretation, the compression function defines a 

distortion channel, or “information bottleneck” (Tishby et al., 2000), through which information 

is passed from the less compressed variable set C to the effect variable E, and the function  

measures how much information is lost in the distorting process of compression. Despite these 

relationships to prior work, none of these approaches argue, as we do, that measurements of the 



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 21 

proportionality and stability of a causal relationship can both be expressed in terms of information 

loss. 

Motivation for Experiments 1-2  

 We have now introduced our theoretical framework for quantifying the amount of 

information lost in moving from a specific causal representation of a given data-generating process 

to a more compressed causal representation of that same process. We intend for this framework to 

serve both a normative and a descriptive role. On the normative side, we have argued above that 

two putatively positive features of causal claims, proportionality and stability, can be given a 

unifying account in terms of information loss in causal models. On the descriptive side, we hold 

that agents, all things being equal, trade off a preference for more compressed causal 

representations against a preference for causal representations that minimize relative information 

loss (this descriptive claim summarizes the hypotheses H1 and H2 above). These hypotheses can 

be tested empirically, and we report the results of two experiments that do so in the following two 

sections. 

 In order to investigate people’s causal representations, we need a measurable response that 

reflects which variables they are representing and at what level of granularity. Asking people to 

generate or evaluate Bayes’ nets would be a natural approach given our formalism, but doing so 

would likely require training (see, for example, Bramley et al., 2015, 2017) and this approach 

would fail to reflect the way that people tend to explicitly represent causal relationships in 

everyday life. Instead, causal relationships are often expressed in the form of generic causal claims 

of the form “C causes E.” Not coincidentally, we have made several such claims in the course of 

this paper (for example, “smoking causes lung cancer”). Such claims can be taken as evidence for 

causal representations on the assumption that they bear some systematic relationship to the 
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variables an individual has represented in their internal causal model. Specifically, we take the 

generation or positive evaluation of a generic causal claim as evidence that the individual 

producing or endorsing that generic holds a causal model consistent with that claim. For example, 

suppose that an individual shown data about a fictional insect called the Bricofly evaluates the 

claim ‘raising Bricofly larvae in a warm, humid tank causes them to develop blue wings’ more 

positively than the claim ‘raising Bricofly larvae in a warm tank causes them to develop blue 

wings.’ We would take this to be evidence that the individual is representing the environment using 

a causal model of Bricofly development in which both different temperatures and different 

humidity levels of the tank are retained in their representation, as opposed to a model in which 

only the temperature of the tank is represented.  

The assumption that the endorsement of generic causal claims reflects an individual’s 

causal representation, which guides our methods in Experiments 1-4, is in keeping with a core 

tenet of the philosophy of science literature on causation: namely, that generic causal claims are 

derived from causal models. For instance, Papineau describes himself as “committed to reading 

‘C causes E’ as saying that C is an ancestor of E in a system of generic casual equations,” where 

one can understand a ‘system of generic causal equations’ as a variety of graphical causal model 

(Papineau 2022, p. 20). Similarly, Woodward writes that “[causal] modeling techniques are at least 

sometimes successful in reliably establishing generic causal claims” (Woodward 2019, p. 765). 

Thus, the current paper’s assumption of a close connection between the causal models used to 

represent a system and generic causal claims about a system is broadly in keeping with at least one 

branch of the philosophical mainstream. 
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Experiment 1 

In Experiment 1, we test H1: that in general, people treat compression as a positive feature 

of a causal representation, such that all else being equal, the more compressed a given 

representation is, the better. To test this hypothesis, we presented participants with a description 

of the results of controlled experiments on a fictional variety of mushroom, fly, or rock, and asked 

them to rate how good it would be to include various claims in a summary of the described results. 

These claims included more and less compressed causal claims (e.g., the more compressed claim 

‘raising Bricofly [a fictional type of insect] larvae in a warm tank causes them to develop blue 

wings,’ and the less compressed claim ‘raising Bricofly larvae in a warm, humid tank causes them 

to develop blue wings’). We manipulated both the vignette used and whether the compression was 

achieved by coarse-graining a variable (thus manipulating proportionality) or removing a 

background variable (thus manipulating stability). We predicted that in the absence of information 

loss due to compression, participants would favor the more compressed representation, and that 

this would hold for manipulations of both proportionality and stability.  

Experiment 1 was also designed to test H2: that compression can come at the cost of 

informativeness, such that the optimal causal representation will achieve a balance of compression 

and informativeness. To test this, we also manipulated the amount of information loss realized by 

the more compressed causal claim. For example, if raising Bricofly larvae in a warm, humid tank 

results in an 85% probability of their developing blue wings, and raising Bricofly larvae in a warm, 

dry tank results in a 70% probability of their developing blue wings, then implicitly, assuming an 

equal probability of having a humid or dry tank, the probability of developing blue wings when 

Bricofly larvae are raised in a warm tank is 77.5%. Under these conditions, and assuming a 1% 

probability of developing blue wings for larvae raised in a either a cold, humid tank or a cold, dry 
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tank, moving from a causal model that keeps track of the humidity or dryness of the tank to one 

that does not keep track of these properties results in a loss of information of .01, on the measure 

of information loss that we introduce above.9 Thus, by manipulating the conditional probabilities 

in the data sets shown to participants, we were able to manipulate the amount of information loss 

inherent in endorsing a more compressed causal claim. We predicted that with greater information 

loss, we would see lower evaluations of the more compressed representation relative to the less 

compressed representation. 

The data, stimuli, and pre-registrations for all experiments in this paper are available at 

https://osf.io/zm6kr/?view_only=124c22b8b2dd4d64b44046c8784911db.  

Participants 

Participants were 450 adults recruited via Prolific. An additional 150 participants were 

excluded for failing comprehension checks or for rating poor causal claims non-negatively. The 

sample of participants was 49.6% female and 48.9% male, with an age range of 19-79 and a mean 

age of 40.10 For all studies reported here, participation was restricted to users with a US-based IP 

address and a 95% rating based on at least 100 previous studies. All studies received IRB approval 

from the authors’ University. 

 
9 Here, we give explicit calculations of information loss for x=.7 and x=.85 to illustrate how these values are 
calculated. When x=.7, the probability p(Blue Wings) = . The causal mutual 
information between the less compressed causal variable and the binary variable for whether a Bricofly develops 
blue wings is . The causal mutual 
information between the more compressed causal variable and the binary Blue Wings variable is 

 so that the information lost due to compression is zero. 

When x=.85, p(Blue Wings) =  and so the causal mutual information between 
the less compressed causal variable and the binary variable for whether a Bricofly develops blue wings is 

, while the causal mutual 
information between the more compressed causal variable and the binary Blue Wings variable is 

, yielding an information loss due to compression 

of approximately .01. 
10 Demographic data obtained from participants was not solicited as part of our study, but was provided by 
participants to Prolific upon joining the platform. 

https://osf.io/zm6kr/?view_only=124c22b8b2dd4d64b44046c8784911db
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Materials and Procedures 

Participants read a vignette in which they learned about a novel causal system, including 

the results of experiments involving that system. For example, in the insect vignette, participants 

were presented with one of the following reports of results of experiments on the fictional 

“Bricofly”: 

Report 1:  

a) x% of all Bricofly larvae raised in a warm, humid tank developed blue wings;  

b) 70% of all Bricofly larvae raised in a warm, dry tank developed blue wings;  

c) 1% of all Bricofly larvae raised in a cold, humid tank developed blue wings;  

d) 1% of all Bricofly larvae raised in a cold, dry tank developed blue wings. 

Report 2:  

a) x% of all Bricofly larvae raised in a warm tank and sprayed with water developed 

blue wings;  

b) 70% of all Bricofly larvae raised in a warm tank and blown with dry air 

developed blue wings;  

c) 1% of all Bricofly larvae raised in a cold tank and sprayed with water developed 

blue wings;  

d) 1% of all Bricofly larvae raised in a cold tank and blown with dry air developed 

blue wings. 

The value of x was varied between subjects and set at either 70, 85, or 98. These values correspond 

to information loss amounts of 0, .01, and .06 respectively in moving from a less compressed 

representation to a more compressed representation, assuming a uniform distribution over possible 
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interventions on the causal variable(s) in the less compressed models in which the evaluated causal 

claims can be represented. 

Table 1  

Structure of Vignettes used in Experiments 1 and 2. 

Vignette Effect Primary Cause Secondary 
Cause 

Background 
Condition 

Drol 
(Mushroom) 

Bumpy 
Stems 

High/Low 
Mineral Soil 

High/Low 
Sodium Soil 

Watered with 
Salt/Fresh Water 

Bricofly 
(Insect) 

Blue 
Wings Warm/Cold Tank Humid/Dry Tank Water Spray/Dry Air 

Blow 
Chapagite 
(Rock) Fissures Warm/Cold 

Water Salt/Fresh Water Wrapped in 
Saline/Plain Cloth 

 

After receiving a version of the findings described above, participants were then asked to 

rate, on a scale from -3 (very bad) to 3 (very good), “how good it would be to include each of the 

following statements in a summary of this report:” 

• Compressed: Raising Bricofly larvae in warm tank causes them to develop blue wings. 

• High: Raising Bricofly larvae [in a warm, humid tank/in a warm tank and spraying them 

with water] causes them to develop blue wings. 

• Low: Raising Bricofly larvae [in a warm, dry tank/in a warm tank and blowing them with 

air] causes them to develop blue wings. 

The causal claims High and Low are so-named because the cause cited in High always confers the 

same or greater probability onto the effect than the causal claim Low (e.g., it is always the case 

that ).  

 As an attention check, participants were also asked to rate the following causal claims: 

• Compressed (Bad): Raising Bricofly larvae in a cold tank causes them to develop blue 

wings. 
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• High (Bad): Raising Bricofly larvae [in a cold, humid tank/in a cold tank and spraying them 

with water] causes them to develop blue wings. 

• Low (Bad): Raising Bricofly larvae [in a cold, dry tank/in a cold tank and blowing them 

with air] causes them to develop blue wings. 

Since all of these claims cite a cause that lowers the probability of its effect, we take them to be 

infelicitous in the context of the scenario shown to participants. Thus, participants who gave 

ratings at or higher than the scale midpoint (i.e., a rating of 0-3) were excluded. 

Figure 1 

Graphs Showing the Causal Relationships between Variables in Experiment 1 

 

Note. The top panel shows the compression used in the proportionality condition, and the bottom 
panel shows the compression used in the stability condition. In both panels, the right graph 
shows the more compressed causal model in which the claim Compressed is embedded, and the 
left graph shows the less compressed causal model in which the claims High and Low are 
embedded. 
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For participants shown Report 1, the claim Compressed is a compression achieved by coarsening 

a causal variable, thus varying proportionality. For participants shown Report 2, the claim 

Compressed is a compression achieved by eliding a background variable, thus varying stability.11 

Figure 1 shows the implicit causal model in which each of these claims is embedded. 

Results 

Figure 2  

Evaluations of Causal Claims as a Function of Information Loss 

 

Note. Bar plots showing mean evaluations in Experiment 1 (with 95% confidence intervals) of 
causal claims under different loss conditions for all participants. Participants were asked to rate 
“how good it would be to include each of the following statements in a summary of this report,” 
with ratings ranging from -3 (very bad) to 3 (very good). Double asterisks indicate significant 
within-participants differences at the .01 level in a mixed effects ANOVA, and triple asterisks 
indicate significant within-participants differences at the .001 level. Specifically, mixed ANOVA 
for each value of Loss found that at Loss=0, Compressed was rated more highly than both High (

, ) and Low ( , ). When Loss=.01, High was not rated significantly 
higher than Compressed ( , ), but was rated higher than Low ( , ). 
When Loss=.06, High was rated significantly higher than both Compressed ( , ) 
and Low ( , ).  

 
11 As described in the previous section, on our formal analysis, both the coarsening of a causal variable and the 
elision of a background condition can both be expressed as compressions of a partition over the same sample space, 
such that there is no difference between these two kinds of compression. We have fashioned our examples to match 
what is understood in the literature (e.g., Woodward, 2010) as a distinction between a refinement of the same 
variable and an elision of a background condition. 
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Figure 2 presents the mean ratings for each of Compressed, High, and Low as a function of the 

amount of information loss incurred through compression. To test whether evaluation of less 

compressed causal claims relative to more compressed causal claims increased as a function of 

information loss due to compression, we computed (as pre-registered) two difference scores: 

• COMPRESSED-HIGH. The difference between the participant’s evaluation of 

Compressed and their evaluation of High (e.g., the difference between the evaluation of 

‘Raising Bricofly larvae in a warm tank causes them to develop blue wings’ and the 

evaluation of ‘Raising Bricofly larvae in a warm, dry tank causes them to develop blue 

wings’). This reflects the degree to which an agent sees a causal claim derived from a more 

compressed model as more fitting than the most compelling causal claim that can be 

derived from a less compressed model. 

• COMPRESSED-AVG(HIGH, LOW). The difference between the participant’s evaluation 

of Compressed and a uniform average of their evaluations of High and Low (e.g., the 

difference between the evaluation of ‘Raising Bricofly larvae in a warm tank causes them 

to develop blue wings’ and the average evaluation of ‘Raising Bricofly larvae in a warm, 

humid tank causes them to develop blue wings’ and ‘Raising Bricofly larvae in a warm, 

dry tank causes them to develop blue wings’).12 This reflects the degree to which an agent 

sees a causal claim derived from a less compressed model as more fitting, on average, than 

any causal claim that can be derived from a less compressed model. 

We regressed these dependent variables against independent variables denoting the assigned 

vignette (Vignette), whether the more compressed claim is achieved by coarsening a causal 

 
12 Due to an error, the equation for COMPRESSED-AVG(HIGH, LOW) was pre-registered for both experiments as 
Evaluation of Compressed - .5(Evaluation of High-Evaluation of Low). However, the correct equation is Evaluation 
of Compressed - .5(Evaluation of High+Evaluation of Low). 



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 30 

variable or removing a background variable (Mode of Compression), and the amount of 

information loss inherent in moving from the less-compressed to more-compressed causal model 

in which causal claims are embedded (Loss), as well as all possible interactions between the 

independent variables. The regressions revealed that only Loss was a significant predictor of 

COMPRESSED-HIGH ( , , ), so that the more information that was 

lost in the move from a more detailed to a more compressed causal model, the more participants 

preferred the claim High to the claim Compressed. Loss was also the only significant predictor of 

COMPRESSED-AVG(HIGH, LOW) ( , , ). Notably, we found no 

evidence of a significant interaction between Loss and Mode of Compression on these dependent 

variables (COMPRESSED-HIGH: , , ; COMPRESSED-

AVG(HIGH, LOW): , ,	 ), nor did we find any significant interaction 

effects between Mode of Compression and any other independent variables.  

For additional analyses based on each individual rating (Compressed, High, Low), see Figure 

2 as well as Supplementary Materials. As a sanity check, we also analyzed the difference between 

participants’ evaluation of High and their evaluation of Low (we label this difference ‘HIGH-

LOW’). As expected, only Loss was a significant predictor of HIGH-LOW ( , 

,	 ), with larger values for HIGH-LOW as the probability of the effect given the cause in 

High increased (resulting in greater information loss). 

In an exploratory analysis, we calculated the percentage of participants who strictly 

preferred Compressed to High across all three loss levels. This percentage was approximately 36% 

when Loss=0, 21% when Loss=.01, and 10% when Loss=.06. 
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Discussion 

These results provide strong evidence in favor of the claim that participants’ relative 

evaluations of more and less compressed causal claims are partially governed by the amount of 

information loss that is inherent in the more compressed causal claim. When there is no 

information loss, participants evaluate more compressed causal claims significantly more highly 

than less compressed causal claims (consistent with H1), suggesting that people award simplicity 

and penalize unnecessary complexity in their evaluation of causal claims. When information loss 

is moderate, there is no significant difference between participants’ evaluations of more and less 

compressed causal claims, suggesting that some participants prefer a compressed claim even when 

some information loss is inherent in compression (consistent with H2).  

 Importantly, we found that participants’ pattern of evaluation of causal claims was similar 

across the condition in which compression was achieved by coarsening a causal variable and the 

condition in which compression was achieved by removing a background variable (see 

Supplementary Materials for additional figures by Mode of Compression). In keeping with our 

analysis, this suggests that the amount of information that is lost due to compression is related to 

evaluations of the quality of causal claims in the same way across both of these ways of 

compressing a causal representation of one’s environment. This, in turn, is in keeping with our 

unified analysis of judgements of the proportionality and stability of causal claims in terms of 

information loss. 

Experiment 2 

In Experiment 1, participants evaluated the three key causal claims (Compressed, High, 

and Low) on the same screen. This could have introduced unintended task demands. For instance, 

participants may have felt that endorsing Compressed was redundant with the endorsement of both 
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High and Low, or that endorsing Compressed (when the option to select more fine-grained options 

was available) implied the causal irrelevance of the unspecified factor. To ensure that the results 

of Experiment 1 were robust to such considerations, we replicated the study with the amendment 

that participants were shown the same data twice, and first asked to evaluate Compressed, and only 

asked to evaluate High and Low after their evaluation of Compressed was completed. 

Participants 

Participants were 483 adults recruited via Prolific. An additional 117 participants were 

excluded for failing comprehension checks or rating poor causal claims non-negatively. The 

sample of participants was 50.1% female and 48.6% male, with an age range of 19-81 and a mean 

age of 38. 

Materials and Procedures 

The procedure was identical to that used in Experiment 1 with three exceptions. First, as 

described above, participants completed their evaluation of Compressed before being asked to 

evaluate High and Low. Second, sentence (b) in both descriptions used in the first experiment was 

amended to replace 70% with 55%. Analogous replacements were made for the other two 

vignettes. Third, the value of x in sentences (a) and (b) was varied between participants and was 

set at either 55, 85, or 98, leading to information loss amounts of 0, .04, and .11 respectively, under 

the assumption of a uniform distribution over possible interventions on causes in the less-

compressed representation of the data-generating process. Thus, Experiment 2 replicates 

Experiment 1 for a different range of loss values. 
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Results 

Figure 3  

Evaluations of Causal Claims as a Function of Information Loss 

 

Note. Bar plots showing mean evaluations in Experiment 2 (with 95% confidence intervals) of 
causal claims under different loss conditions for all participants. Triple asterisks indicate 
significant within-participants differences at the .001 level. Mixed ANOVA for each value of Loss 
found that at Loss=0, Compressed was rated more highly than both High ( , ) and 
Low ( , ). At Loss=.04, High was rated more highly than Compressed (
, ) and Low ( , ). At Loss=.11, High was rated more highly than 
Compressed ( , ) and Low ( , ). 

 
Figure 3 presents the mean ratings for each of Compressed, High, and Low as a function 

of Loss. We performed the same regressions as in Experiment 1. Loss was a significant predictor 

of all three dependent variables (COMPRESSED-HIGH: , , ; 

COMPRESSED-AVG(HIGH, LOW): , ,	 ; HIGH-LOW: 

, ,	 ). Thus, as the amount of information lost due to compression 

increased, Compressed was again evaluated more negatively in comparison with more detailed 

causal claims. In addition, we again saw larger values for HIGH-LOW as the probability of the 
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effect given the cause in High increased (resulting in greater information loss). For additional 

analyses based on each individual rating (Compressed, High, Low), see Figure 3 and 

Supplementary Materials. 

In a further replication of Experiment 1, the manner in which compressed causal claims 

were generated (i.e., either by coarsening a causal variable or removing a background variable) 

was not a significant predictor of any of the three dependent variables measured, nor did it interact 

with Loss (Regression statistics for the interaction between Mode of Compression and Loss: 

COMPRESSED-HIGH: , ,	 ;  COMPRESSED-AVG(HIGH, LOW): 

, , ; HIGH-LOW: , ,	 ; see 

Supplementary Materials for additional figures broken down by Mode of Compression). This again 

suggests that measures of information loss in causal model compression provide a unifying account 

of the value of both proportional and stable causal claims.  

In an exploratory analysis, we measured the percentage of participants who strictly 

preferred Compressed to High across all three loss levels. This percentage was approximately 39% 

when Loss=0, 10% when Loss=.04, and 2% when Loss=.11. 

The results of Experiment 2 replicate the positive results of Experiment 1 for a different 

range of loss levels, and under conditions such that Compressed was evaluated separately from 

High and Low. This renders the aforementioned concerns about task demands less plausible.  

The results of Experiment 2 also offer evidence against an alternative interpretation of our 

results. Specifically, the causal power theory (Cheng, 1997) holds that agents evaluate causal 

claims positively to the extent that they optimize the following quantity, which we express in terms 

of Pearl’s do-calculus: 
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.13 

Although the theory is not typically applied to differences between causal claims, but rather to the 

distinction between causal and non-causal associations, a natural application to our current case is 

to consider the difference in causal power between less compressed and more compressed causal 

claims as a measure of the extent to which the less compressed claim should be preferred. When 

we do so, however, the causal power theory predicts different results for the dependent variable 

COMPRESSED-AVG(HIGH, LOW) than those observed in Experiment 2. To illustrate, see Table 

2, which shows the power of each of the three causal claims evaluated in Experiment 2, and the 

resulting value of Power(Comp) - AVG[Power(High), Power(Low)].  

Table 2 

Causal power values for causal claims in Experiment 2.14  
 

p(Effect|High) Power(Comp) Power(High) Power(Low) 
Power(Comp) - 

AVG[Power(High),Power
(Low)]15 

.55 .545 .444 .444 .101 

.85 .697 .815 .366 .106 

.98 .763 .975 .325 .112 
 

If evaluations of causal claims are primarily driven by differences in causal power, then 

we would expect that the difference between participants’ evaluations of Compressed and their 

average evaluation of High and Low (i.e., the dependent variable COMPRESSED-AVG(HIGH, 

LOW)) should be positively correlated with value of Power(Comp) - AVG[Power(High), 

 
13 The original formulation of causal power given in Cheng (1997) is not stated in terms of Pearl’s do-calculus. 

Instead, it is written  (see p. 374, Eq. 8). We state causal contrast in these 

terms here to maintain formal consistency with our own measure of information loss.  
14 To demonstrate how causal power values were calculated, when p(Effect|High)=.85, Power(Comp) = 
(.5(.85+.55)-.01)/(1-.01) = .697, whereas Power(High) = (.85 – (1/3)(.55 + .01 + .01))/(1-(1/3)(.55 + .01 + .01)) = 
.815. 
15 The figures in this column are calculated using unrounded values of the values listed in other columns. 
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Power(Low)]. However, if we use the data from Experiment 2 to regress COMPRESSED-

AVG(HIGH, LOW) against Power(Comp) - AVG[Power(High), Power(Low)], along with Mode 

of Compression, Vignette, and all interactions between these three variables, we observe a 

significant predictive relationship between COMPRESSED-AVG(HIGH, LOW) and 

Power(Comp) - AVG[Power(High), Power(Low)] going in the opposite direction ( , 

,	 ), such that higher values of  Power(Comp) - AVG[Power(High), Power(Low)] 

are associated with lower values of COMPRESSED-AVG(HIGH, LOW). Thus, a causal power 

theory fails to predict a crucial dependent variable that our information loss theory is able to 

successfully predict.  

Discussion 

Nevertheless, our results in Experiments 1 and 2 remain subject to two salient concerns. 

First, Experiments 1-2 varied proportionality by adding or omitting qualifiers to a variable (e.g., 

warm humid tank versus warm tank). More canonical manipulations of proportionality involve a 

continuum that can be coarsened into discrete ranges (e.g., a scale with ten values that is coarsened 

into two ranges of values). Thus, the results of Experiments 1-2 leave open the possibility that 

these more canonical manipulations of proportionality would show divergence between effects of 

information loss on proportionality and stability. Second, Experiments 1 and 2 were designed to 

provide positive support for H1 and H2, but were not designed to differentiate our account from 

another alternative hypothesis: that evaluations of more and less compressed causal claims do not 

reflect information loss, as our account suggests, but instead differences in causal contrast 

(consistent with Lien and Cheng, 2000). Experiment 3 was designed to addresses both of these 

concerns. 
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Experiment 3 

 Lien and Cheng (2000) develop an account of how people differentiate between genuine 

and spurious causes, and in so doing present results in keeping with the claim that when agents 

choose between candidate causal explanations of a given event, they choose the one that 

maximizes causal contrast, which is given by the following equation:16 

. 

Applying this formula to the values from Experiments 1 and 2 reveals that as the probability of the 

effect for High increases, the difference in contrast between the compressed causal claim and the 

high causal claim decreases.17 So, it seems that our results in Experiment 1-2 might just as well be 

explained by the hypothesis that participants are basing their judgments on the difference in 

contrast between Compressed and High as they are by our hypothesis that participants are 

balancing compression against information loss. To distinguish between these two hypotheses, we 

ran an experiment using a similar paradigm to Experiments 1-2, but wherein participants were 

shown data sets for which information loss and causal contrast generated different qualitative 

predictions. This design allows us to test which of these two quantities is a more plausible 

candidate for the cue that participants are using to evaluate causal claims. Experiment 3 also 

 
16 As in the case of causal power, we have re-written Lien and Cheng’s contrast measure in terms of Pearl’s do-
calculus. In the original formulation, causal contrast is written as . 
17 In Experiment 1, when x=.7, one can calculate the key contrast figures as follows: 

, , 

. When x=.85, the key contrast calculations are: 
,		

. When x=.98, the key contrast calculations are: 
, 

, and 

. 
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differed from Experiments 1-2 in manipulating proportionality through coarsenings of a 

continuous quantity. 

Participants 

Participants were 458 adults recruited via Prolific. An additional 185 participants were 

excluded for failing comprehension checks or rating poor causal claims non-negatively. The 

sample of participants was 49.9% female and 50.1% male, with an age range of 18-79 and a mean 

age of 37. 

Materials and Procedures 

Participants read a vignette in which they learned about a novel causal system, including 

the results of experiments involving that system. As in Experiments 1 and 2, the fictional 

experiments involved either insects, mushrooms, or rocks. For example, in the insect vignette, 

participants assigned to the proportionality condition were presented with one of the data scenarios 

shown in Table 3, and asked to evaluate the following three causal claims on a scale from -3 to 3: 

• Compressed: Raising Bricofly larvae in a moderate-temperature tank causes them to 

develop blue wings. 

• High: Raising Bricofly larvae in a moderately warm tank causes them to develop blue 

wings. 

• Low: Raising Bricofly larvae in a moderately cold tank causes them to develop blue wings. 

The causal claims evaluated in the stability case were identical to those evaluated in Experiments 

1 and 2, only with “moderate-temperature tank” replacing “warm tank” in the insect vignette, and 

a similar substitution made in other vignettes. Table 3 also shows the values of both information 

loss and the difference in contrast between Compressed and High for all three data sets. As can be 

seen from the table, Scenarios 2 and 3 both differ from Scenario 1 by the same amount with respect 
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to the difference in contrast between Compressed and High, but only Scenario 2 differs from 

Scenario 1 with respect to information loss. Thus, if we believe that information loss and not causal 

contrast is affecting participants’ evaluations of causal claims, then we would predict that 

participants will treat Scenarios 1 and 3 similarly, but treat Scenario 2 differently from both 

Scenarios 1 and 3.  

Table 3 

Information loss and causal contrast for three different scenarios shown in Experiment 3. 

Scenario 1 Scenario 2 Scenario 3 
Tank 
Condition 

% of 
Bricofly 
Developing 
Blue Wings 

Tank 
Condition 

% of 
Bricofly 
Developing 
Blue Wings 

Tank 
Condition 

% of 
Bricofly 
Developing 
Blue Wings 

Extremely Cold 
Tank (0-24 
degrees) 

1% 
Extremely Cold 
Tank (0-24 
degrees) 

1% 
Extremely Cold 
Tank (0-24 
degrees) 

43% 

Moderately 
Cold Tank (25-
49 degrees) 

70% 
Moderately 
Cold Tank (25-
49 degrees) 

70% 
Moderately 
Cold Tank (25-
49 degrees) 

70% 

Moderately 
Warm Tank 
(50-74 degrees) 

70% 
Moderately 
Warm Tank 
(50-74 degrees) 

98% 
Moderately 
Warm Tank 
(50-74 degrees) 

70% 

Extremely 
Warm Tank 
(55-99 degrees) 

1% 
Extremely 
Warm Tank 
(55-99 degrees) 

1% 
Extremely 
Warm Tank 
(55-99 degrees) 

43% 

Loss 0 Loss .0618 Loss 0 
Contr(Comp)-
Contr(High) .23 Contr(Comp)-

Contr(High) .09 Contr(Comp)-
Contr(High) .09 

 

 

 

 

 

 

 
18 In the pre-registration for Experiment 3, this figure is mistakenly given as ‘.31.’ 
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Results 

Figure 4 

Mean evaluations of causal claims for three scenarios in Experiment 3. 

 

Note. Triple asterisks indicate significant within-participants differences at the .001 level. 

Figure 4 shows the results of Experiment 3 for all three scenarios across both modes of 

compression. As we were primarily concerned with differential evaluations of Compressed and 

High across different scenarios, we ran mixed ANOVA for the within-participants difference 

between Compressed and High in each scenario. We found that in Scenarios 1 and 3, Compressed 

was strictly preferred to High (Scenario 1: ; Scenario 3: ). This 

is consistent with H1 (since participants favored compression when information loss was zero). 

Moreover, the preference for the claim Compressed over the claim High did not differ across 

Scenarios 1 and 3 ( , ), which is consistent with the predictions of information loss, 

but not those of causal contrast (see Table 3).  

Unlike Scenarios 1 and 3, in Scenario 2, the causal claim High was strictly preferred to the 

causal claim Compressed ( ). This is consistent with the hypothesis that 
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compression trades off with information loss, such that less compressed causal claims may be 

favored when information loss is not negligible. Moreover, the difference in ratings between 

Compressed and High differed across Scenarios 2 and 3 ( , , ); this is 

consistent with the predictions of information loss, but not with those of causal contrast (see Table 

3).   

Notably, we do see a significant effect of the proportionality/stability condition on the 

difference in evaluations between Compressed and High in Scenario 1 ( , ), but not 

for Scenarios 2 and 3, suggesting that the finding for Scenario 1 is likely spurious. A full report of 

all pre-registered analyses for Experiment 3 is provided in the Supplemental Materials. 

Discussion 

Although Lien and Cheng (2000)’s causal contrast theory was developed as an account of 

how people differentiate between genuine and spurious causes, rather than how people determine 

a level of compression at which to represent the causal structure of their environment, causal 

contrast nevertheless offers a natural alternative to our own account of information loss in 

explaining why people might favor more or less compressed causal claims. Experiment 3 was 

designed to provide a direct test of the predictions of information loss versus those of causal 

contrast in explaining judgments like those elicited in Experiments 1-3. The results provide clear 

support for information loss: differences in information loss (holding differences in causal contrast 

fixed) predicted different patterns in ratings, while differences in causal contrast (holding 

information loss fixed) did not. Moreover, because our proportionality cases in Experiment 3 

involve coarsenings of a continuous quantity (e.g., temperature), the results bolster our claim that 

the information loss framework provides a unified account of evaluations of both proportionality 

and stability.  
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In another experiment with a similar design to Experiment 3, we directly tested whether 

our theory could better predict peoples’ evaluations of causal claims than a causal power theory. 

While the results of that experiment are less conclusive, we argue that on the whole (including the 

results of Experiment 2), our results are better explained by our information loss-based theory than 

a causal power-based theory. The materials, results, and analysis of this experiment are reported 

in the Supplemental Materials. 

Having established our first key hypotheses (H1 & H2) – that people treat both 

informativeness and compression as positive features of causal claims, to be traded off against one 

another – we turn to our third key hypothesis (H3) – that agents will tolerate information loss for 

the sake of compression whenever the lost information is not decision-theoretically valuable to 

that agent in a given context.  

Decision Theory and The Value of Lost Information 

The results of Experiments 1-3 demonstrate that the strength of participants’ preference for 

more compressed causal claims over less compressed claims is predicted by the amount of 

information loss achieved by moving from a model in which the less compressed claim is 

embedded to a model in which the more compressed claim is embedded. However, these results 

also show that when the total amount of information loss is low, the preference for more detailed 

causal claims over less detailed ones is not significant. Additionally, they show that even as the 

total amount of information loss increases, mean evaluations of compressed causal claims remain 

positive. This suggests that, all things considered, people assign value to lossy compressions of a 

causal model, even when they have the opportunity to endorse a lossless compression of the same 

underlying data, where a “lossless” compression is understood as one that preserves all four 

variable values. 
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 What explains the value that people assign to compressed causal claims that elide 

information about the underlying dynamics of the processes that they represent? As stated in the 

introduction, our hypothesis is that agents’ evaluations of causal claims that compress their target 

systems with information loss are driven at least in part by agents’ judgments as to the decision-

theoretic value of the information that is lost in compression. That is, when agents judge that the 

information that is lost in the move to a more compressed causal model is not relevant to their 

choice between a set of feasible actions, they evaluate the compressed causal claim more positively 

than they would if the lost information were relevant to their choice between a set of actions.  

Table 4 

Data shown to participants in Experiment 4. 

Medication Facts about Medication 
(Proportionality Condition) 

Facts about Medication 
(Stability Condition) 

% of Patients with Reduced 
Severity of Headaches 

A Active ingredient Type-1 
Reptol 

Active ingredient Reptol 
and taken with food x% (x > 80) 

B Active ingredient Type-2 
Reptol 

Active ingredient Reptol 
and taken without food 70% 

C Active ingredient Type-1 
Psylo 

Active ingredient Reptol 
and taken with food 1% 

D Active ingredient Type-2 
Psylo 

Active ingredient Psylo and 
taken without food 1% 

 

To illustrate, consider an agent who is tasked with stocking headache medicines at a 

pharmacy. These medicines can have one of two ingredients (Reptol or Psylo), each of which 

comes in one of two types (Type-1 or Type-2). The agent wants to stock all and only those 

headache medicines that relieve headaches in y% of patients, and has access to the data in Table 

4. Suppose that the agent is in the proportionality condition. If y=50, such that they would stock 

any medicine that reduces severity of headaches in at least 50% of patients, then whether a Reptol-

based or Psylo-based medicine is of Type-1 or Type-2 is irrelevant to their decision; they will 
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stock Reptol-based medicines and not Psylo-based medicines. Thus, the compression from ‘Type-

1 Reptol causes reduced severity of headaches’ to ‘Reptol causes reduced severity of headaches’ 

incurs no loss of decision-theoretically valuable information for this agent; it elides only decision-

irrelevant information about the type of Reptol, and we would expect the agent to be indifferent 

between the two claims if asked to evaluate their aptness in describing the efficacy of headache 

medicines more generally, or to show a preference for the more compressed claim. By contrast, if 

y=80, such that the agent would stock any medicine that reduces severity of headaches in at least 

80% of patients, and if x>80, then only Type-1 Reptol should be stocked, according to the agent’s 

own preferences. Thus, the compression from ‘Type-1 Reptol causes reduces severity of 

headaches’ to ‘Reptol causes reduces severity of headaches’ does elide decision-relevant 

information about the type of Reptol. Under this condition, we would therefore expect an agent to 

evaluate the less compressed causal claim more positively than the more compressed causal claim. 

We use this motivating example as part of our materials in Experiment 4. 

Mathematically, we can define the value of the information lost when moving from a less 

compressed causal representation to a more compressed representation as follows. We begin with 

a set of variables that can be partitioned into a singleton set containing an action variable A, a 

singleton set containing an effect variable E, and a subset of observable variables . Let 

 be a real-valued utility function defined on the range of the action variable A and 

the effect variable E. Each value  of this function represents the utility, to some agent, of 

setting A to a particular value a (i.e., performing a particular action) when E takes a particular 

value e. The expected utility of an action a is defined as follows: 
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The expected utility of an action a, given an observation that the variables in 	take the set of 

values o, is given by the equation: 

 

where . With these two equations in hand, we define the 

decision-theoretic value of the information contained in the observable variables O as follows: 

 

That is, the value of the information contained in a set of observable variables is the average 

difference between the maximum utility an agent can expect when they have observed the value 

of all observable variables and the maximum utility that agent can expect when they have not made 

any observations. This is the standard decision-theoretic notion of value of information as defined 

by Blackwell (1953) and Good (1960). 

 Equipped with this definition, consider a case in which we move from a less compressed 

set of observable variables O (such as whether a medicine contains Type-1 Reptol, Type-2 Reptol, 

Type-1 Psylo, or Type-2 Psylo) to a more compressed set of observable variables 𝑶)  (such as 

whether a medicine contains Reptol or Psylo) for a fixed action variable A and an effect variable 

E. We can now calculate the decision-theoretic value of lost information (VOLI) with respect to 

this move, for an agent with utility function : 

 

This quantity tells us how costly the compression from 𝑶 to 𝑶)  is for an agent whose preferences 

over values of A and E are given by the utility function . 

 There is an important connection between our measure of the value of lost information and 

our measure of overall information loss. Specifically, for a natural formalization of an agent whose 
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sole goal is to guess the correct distribution over an effect variable, the value of lost information 

in a compression is equal to the total amount of lost information involved in compression. To see 

this, consider an agent for whom the range of their action variable A consists of all possible 

probability distributions over an effect variable E, with each distribution in A representing the act 

of making a prediction about the probability of each value of E obtaining. The agent’s utility 

function is such that for any action a and value 𝑒 of E, . This utility function 

rewards the agent for assigning high probability to E taking the value 𝑒 when this actually occurs, 

with greater reward when said occurrence was unlikely according to the marginal distribution over 

E. Now consider a set of causal variables C with compression 𝑪). For such an agent, 

.19 So, for the special case of an agent who only aims to make correct 

predictions about E, the value of lost information just is the total amount of information lost.  

In this light, participants’ responses in Experiments 1-3 can be interpreted as reflecting a 

trade-off between: i) satisfying the decision-theoretic goal of making correct predictions about E, 

and ii) maintaining a compressed causal representation of the system under study. However, in the 

following experiments we deliberately place agents in decision scenarios in which their goals 

involve more than solely guessing the correct distribution over the effect variable, to examine the 

more general role of the value of lost information in agents’ evaluations of more and less 

compressed causal claims. Thus, what emerges from Experiments 1-4 is a general account 

 
19 To see this, consider the quantity . The quantity 

 is maximized when for all e. Thus, 

= . The 

quantity is maximized at zero for . Thus, 

. Repeating for  yields . Thus, 
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according to which people evaluating more and less compressed causal representations engage in 

a two-way tradeoff between compression and maintaining decision-theoretically valuable 

information, but where, in at least some cases, peoples’ decision-theoretic goals include making 

accurate predictions (and therefore show sensitivity to information loss). 

Motivation for Experiment 4 

Experiment 4 tests H3: when an agent is placed in a decision context, that agent’s 

evaluations of compressed causal claims will be sensitive to whether or not the value of the 

information lost in compression is zero or strictly positive. Specifically, we expect agents to 

evaluate compressed causal claims more positively when the value of the information lost in the 

relevant compression is zero.  

One implication of these predictions is that agents’ causal representations of their 

environments are primarily guided by their prudential values. That is, agents build causal models 

of their environments so as to achieve a representation that: i) allows for expected-utility-

maximizing interventions on their environment, and ii) encodes observations that facilitate the 

choice of expected-utility-maximizing actions. In this respect, our hypothesis and the results 

supporting it are in keeping with work on value-guided task construal by Ho et al. (2022), as well 

as theoretical work by Brodu (2011), Kinney (2019), and Kinney and Watson (2020), arguing that 

prudential factors such as an agent's interest in realizing certain values of an effect variable and 

the value of the information provided by a causal variable determine the overall quality of 

compressed causal claims. However, Ho et al.’s experimental paradigms did not test the extent to 

which explicitly causal representations are value-guided, and so our experiments are also the first 

to test these ideas as descriptive claims about human evaluations of causal claims. 
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Experiment 4 

 In Experiment 4, we designed vignettes with a similar structure to those used in 

Experiments 1-3, but which also allowed us to manipulate whether the VOLI realized in the move 

from a less compressed to more compressed causal model of data presented in the vignette was 

zero or strictly positive. We hypothesized that when VOLI is zero, participants would tolerate 

information loss, and therefore rate causal claims embedded in a more compressed representation 

at least as highly as those embedded in a less compressed representation. By contrast, when VOLI 

is strictly positive, we hypothesized that participants would be less tolerant of information loss, 

since the more compressed representation fails to include information that is prudentially valuable 

to them, and they would therefore prefer those claims embedded in a less compressed 

representation. As in our earlier studies, we also hypothesized that these patterns of evaluation 

would hold regardless of whether compression was achieved by coarsening a causal variable or 

eliding a background condition. 

Participants 

Participants were 372 adults recruited via Prolific. An additional 408 participants were 

excluded for failing comprehension checks, and an additional 26 participants were excluded due 

to experimenter error.20,21 The sample of participants was 49.2% female and 48.5% male, with an 

age range of 19-93 and a mean age of 42.  

 

 

 
20 A bug in our code meant that these 26 participants did not receive accurate feedback on the answers that they gave 
to multiple choice questions that were used to exclude participants from analysis. This resulted in slightly fewer data 
points being collected than were pre-registered. We exclude the data produced by these participants from our 
analysis below for the sake of accuracy, but note that all reported significant results still hold if the data from these 
participants is included. 
21 Given the large number of exclusions, we repeated key analyses including all participants. Patterns of findings 
were similar overall; see Supplementary Materials for details. 
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Materials and Procedures 

We presented participants with the results of fictional experiments involving headache 

medications or training programs for new employees at a company. Participants were told that 

headache medications/training programs had to be shown to be effective in a certain percentage of 

people in order to be recommended for stocking on a pharmacy’s shelves/being required for new 

employees. Participants were then asked to answer questions about the decisions they would make 

about different headache medicines or training programs, and then asked a second set of questions 

about their pattern of decision making with respect to the first set of questions.  

To illustrate, participants shown the vignette about headache medicines were shown the 

data in Table 4 . The value of x was varied between participants, as was whether the first or second 

set of facts about each medication was shown. Participants shown these data were then told that 

their manager had asked them to stock any medicine that was shown to reduce the severity of 

headaches in at least y% of patients, where . They were then asked to answer the following 

yes-or-no questions: 

A1. Would you stock Medication A? 

A2. Would you stock Medication B? 

A3. Would you stock Medication C? 

A4. Would you stock Medication D? 

The correct answer to 1A is always ‘Yes’, and the correct answer to 3A and 4A is always ‘No.’ 

Whether the correct answer to 2A is ‘Yes’ or ‘No’ depends on whether y is less than or greater 

than 70. This was manipulated between participants, by setting y=50 for some and y=80 for others.  

Participants who answered these questions incorrectly were given a second chance to answer. If 

they answered incorrectly again, their data were excluded from analysis. Participants were then 



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 50 

shown a summary of the correct answers to the first set of questions, and then asked to say whether 

the following statements, or analogous statements for those assigned to different conditions, were 

true or false: 

B1. Whenever a medication contains Reptol, you would stock it, regardless of whether it 
is Type-1 or Type-2.  
 
B2. Whenever a medication contains Reptol, you would stock it if it is Type-1 but not if it 
is Type-2.  
 
B3. Whenever a medication contains Psylo, you would not stock it, regardless of whether 
it is Type-1 or Type-2. 
 
B4. Whenever a medication contains Psylo, you would stock it if it is Type-1 but not if it 
is Type-2. 

 
The statement B1 is true when y 70 and false when y>70, B2 is true when y>70 and false when 

y 70, B3 is always true, and B4 is always false. Participants who answered these questions 

incorrectly were given a second chance to answer. If they answered incorrectly again, their data 

were excluded from analysis. 

Participants were then asked to evaluate, on a scale from -3 (very bad) to 3 (very good), 

how good it would be to include the following causal claims in a summary of the data prepared for 

a colleague: 

Compressed: Reptol causes reductions in the severity of headaches. 
 
High: [Type-1 Reptol/Reptol taken with food] causes reductions in the severity of 
headaches. 
 
Low: [Type-2 Reptol/Reptol taken with food] causes reductions in the severity of 
headaches. 
 
Compressed (Bad): Psylo causes reductions in the severity of headaches. 

 
High (Bad): [Type-1 Psylo/Psylo taken with food] causes reductions in the severity of 
headaches. 
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Low (Bad): [Type-2 Psylo/Psylo taken with food] causes reductions in the severity of 
headaches. 
 

See Figure 5 for a schematic representation of the compression inherent in endorsing the causal 

claim Compressed in the conditions in which compression involves coarsening a causal variable. 

As in Experiments 1-3, data from participants who assigned non-negative evaluations to the bad 

causal claims were excluded from analysis. 

 
Figure 5  

Graphs showing the Causal Relationships between Variables in Experiment 4  

 

Note: The top panel shows the uncompressed graph used in the proportionality condition (in which 
the claims High and Low are embedded), and the bottom panel shows the compressed graph used 
in the same condition (in which the claim Compressed is embedded). Whether the agent’s manager 
approves of their choice of medication to stock depends on their choice of medication and the 
active ingredient in that medication, as indicated in the graph. The agent can observe the active 
ingredients in each medication, which is in turn informative about the likelihood that their manager 
approves their choice of medication. 
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Between participants, we manipulated: 

• the vignette used (see Table 5 for a comparison of the pharmaceutical and employee 

training vignettes),  

• the amount of information loss realized by the more compressed causal claim (by setting 

the value of x to either 85 or 98, resulting in information loss amounts of .01 and .06, 

respectively), 

• whether compression was achieved by coarse-graining a variable, thus manipulating 

proportionality, or eliding a background variable, thus manipulating stability (this was done 

in the pharmaceutical vignette by showing participants either the first or second set of facts 

about each medication, respectively), 

• whether the decision-theoretic value of the information lost in the move from a less 

compressed to a more compressed causal model was zero or strictly positive (by setting the 

value of y to either 50 or 80, respectively). 

Table 5 

Structure of vignettes used in Experiment 4. 

Vignette Effect Primary Cause Secondary Cause Background Condition 

Pharma Reduced Severity of 
headaches Reptol/Psylo Type-1/Type-2 Taken with/without 

food 

Training Becoming a 
successful employee 

Case 
Studies/Simulations 

Task-focused/Problem-
focused 

Held on 
weekends/weekdays 

 

The final manipulation described above has no analog in Experiments 1-3, and so we explain it 

here in more detail. In the pharmaceutical case, when y=50, participants should recommend 

medications containing Reptol regardless of whether that Reptol is Type-1 or Type-2, and 

regardless of whether the medication must be taken with or without food. Under these conditions, 

the information lost in the compression is of no use to the agent’s decision-making. Thus, VOLI 
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in this case is zero. However, when y=80, only medications containing Type-1 Reptol/Reptol taken 

with food should be stocked on the shelves, and so the VOLI for the compression is strictly 

positive, on the assumption that agents assign strictly higher utility to complying with their 

manager’s directions than to failing to comply. By manipulating whether VOLI was zero or strictly 

positive between participants, we were able to measure the extent to which the decision-theoretic 

value of the amount of information lost, controlling for the amount of information loss itself, 

influenced participants’ evaluations. 

Figure 6  

Evaluations of Causal Claims by VOLI and Information Loss 

 

Note: Bar plots showing mean evaluations in Experiment 4 (with 95% confidence intervals) of 
causal claims as a function of loss for participants assigned to the zero-VOLI condition (a) and 
the positive-VOLI condition (b). Triple asterisks indicate significant within-participants 
differences at the .001 level in a mixed effects ANOVA. Mixed ANOVA found that when the 
VOLI associated with compression is zero, there was no significant difference between 
Compressed and High ( ,	 ). There was a significant interaction effect between: i) 
the between-subjects difference in whether compression was achieved by coarsening a causal 
variable or removing a background variable, and ii) the within-subjects difference between 
evaluations of Compressed and High ( ,	 ). When VOLI is strictly positive, there 
was a significant difference between Compressed and High ( ,	 ). There was also 
a significant effect of the interaction between the amount of information lost due to compression 
and the vignette shown to participants ( ,	 ), and a significant interaction effect 
between the between-subjects difference in information loss due to compression and the within-
subjects difference between evaluations of Compressed and High ( ,	 ).  
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Results 

Figure 6 shows mean evaluations of each causal claim as a function of information loss 

under the different VOLI conditions. We first performed the same regressions as Experiments 1 

and 2, with an additional binary independent variable added to represent whether the VOLI due to 

compression in the vignette shown to a participant was zero or strictly positive (once again, we 

also regressed our dependent variables on all possible interactions between all four of our 

independent variables). We found that COMPRESSED-HIGH, the difference between evaluations 

of Compressed and High, was significantly predicted by the following: i) whether VOLI was zero 

or strictly positive ( , , ), such that the difference between evaluations of 

Compressed and High was negligible when VOLI was zero, but much larger and negative 

(reflecting higher ratings for High than Compressed) when VOLI was strictly positive; ii) the 

amount of information loss due to compression ( , ,	 ), such that the 

extent to which ratings for High dominated ratings for Compressed increased as information loss 

increased; and iii) the interaction between whether VOLI was zero or strictly positive and the 

information loss due to compression ( , , ), so that when VOLI was 

strictly positive, increases in information loss due to compression resulted in lower values of 

COMPRESSED-HIGH.  

We followed up this interaction with independent tests of each VOLI condition. This 

revealed that when we restricted our analysis to just those cases in which VOLI is strictly positive, 

the sole significant predictor of COMPRESSED-HIGH is the amount of information lost in 

compression ( ,	 ,	 ); by contrast, in those conditions for which VOLI 

was zero, none of the independent variables were significant predictors of COMPRESSED-HIGH. 

Finally, the original regression also revealed an interaction between: i) whether VOLI was zero or 
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strictly positive, ii) the amount of information loss due to compression, and iii) the vignette shown 

to a participant ( , , ). When VOLI was zero, participants who were 

shown the Pharma vignette tended to assign lower values to COMPRESSED-HIGH than those 

who were shown the training vignette. When VOLI was strictly positive, this relationship was 

reversed; participants who were shown the Pharma vignette tended to assign higher values to 

COMPRESSED-HIGH than those shown the Training vignette. As in Experiments 1-2, we found 

that the interaction between information loss due to compression, VOLI, and whether compression 

was achieved by coarsening a causal variable (proportionality) or removing a background variable 

(stability) was not a significant predictor of any of our dependent variables (COMPRESSED-

HIGH:	 ,	 ,	 ).	 

See the Supplemental Materials for the full pre-registered findings of Experiment 4. 

Discussion 

Experiment 4 found support for H3: When participants were asked to select a causal 

representation in the context of a particular decision problem, their tolerance for information loss 

was moderated by the decision-theoretic value of the information that was lost. Specifically, when 

the value of information lost in moving to a more compressed representation was zero, they rated 

the compressed claim (Compressed) and the less compressed claim associated with the highest 

probability (High) similarly, regardless of how much information loss was associated with the 

more compressed claim. But when the value of information lost through compression was strictly 

positive, participants favored the less compressed claim associated with the highest probability 

(High) over the more compressed claim (Compressed), and additionally showed sensitivity to the 

amount of information lost, with the compressed claim more strongly disfavored when it was 

associated with greater information loss. This suggests that agents do not merely consider whether 
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lost information has strictly positive value or zero value when evaluating claims embedded in more 

or less compressed causal models, but instead continuously trade off an all-thing-considered 

preference for compression against the decision theoretic value of the information lost in 

compression, where there is an agential goal both to have enough information to accomplish a task 

and to be as predictively accurate as possible. 

 Regressions on the individual evaluations of each causal claim show a contrast between 

the effect of different amounts of information loss in Experiments 1 and 2 and the effect of different 

values for VOLI in Experiment 4. In Experiments 1 and 2, changes in the amount of information 

loss involved in compression mostly led to higher evaluations for High, without significant 

changes to evaluations of Compressed. By contrast, manipulations of VOLI in Experiment 4 

largely led to changes in evaluations of Compressed, without significant changes in the value of 

High. This suggests that when more information is lost in compression, agents avoid that 

information loss by ensuring that they include detailed causal claims in their descriptions of a data-

generating process. However, when the lost information is not decision-theoretically valuable to 

them, they do not downgrade their evaluations of more detailed causal claims, but instead upgrade 

their evaluations of causal claims embedded in a more compressed causal model.  

 One might worry that by only measuring participants’ evaluations of causal claims, the 

preference we observe for more compressed causal explanations when information loss is low and 

VOLI is zero are entirely explained by pragmatic considerations along the lines of Grice’s maxim 

of quantity (Grice, 1975), according to which a speaker should strive to be as informative as 

possible without providing any unnecessary information. In fact, we regard such maxims as highly 

amenable to our framework: much of what we have claimed can be seen as a formalization of 

Gricean ideas. Nonetheless, our own claims are more general insofar as they pertain to causal 
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representation generally, not only interpersonal, linguistic communication. We therefore 

conducted an experiment, reported in the Supplemental Materials, in which participants saw the 

same stimuli as in Experiment 4, but in which they were asked to produce causal claims reflecting 

what they learned, rather than evaluate causal claims designed for communicating with others. To 

illustrate, participants shown the pharmaceutical vignette were required to describe, in at least 50 

characters, “what you have learned about the efficacy of active ingredients in headache 

medicines.” These participant-produced descriptions were then coded to assess the extent to which 

they expressed compressed representations of the data presented to the participant. This study 

found an effect of VOLI manipulations on participants’ propensity to give compressed causal 

summaries of the data, in keeping with the findings of Experiment 4. For instance, when VOLI 

was zero, one participant wrote “Reptol reduces headache symptoms. Psylo does not. I would stock 

Reptol. I would not stock Psylo.” When VOLI was strictly positive, one participant wrote: “the 

active ingredient Reptol Type-1 is most effective in reducing the severity of the patients' 

headaches.” However, this study did not find an effect of information loss on participants’ 

propensity to give compressed causal summaries of the data. 

 Nevertheless, one might still argue that the task in this follow-up experiment was still 

implicitly communicative, such that our results there, as in the other experiments reported herein, 

ultimately address the question of how people determine the level of compression with which they 

talk about the causal structure of the world, which is just one instance of the broader question of 

how people determine the level of compression with which they represent the causal structure of 

the world. Our aim in this paper is to address the latter question, and to examine how people 

determine the level of compression at which they represent the causal structure of the world. While 

we feel our dependent variables in Experiments 1-4, and their associated follow-ups, partially 
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address the question of representation, it is nevertheless the case that they are communicative in 

nature. To this end, we conduct a fifth experiment in which we show that both the value and amount 

of the information lost in compression affect participants’ judgments as to the optimal level of 

compression for a data set, where these judgments are measured in a way that does not require the 

participant to make or contemplate making an overtly communicative act. This fifth experiment is 

meant to rule out an interpretation of our results as being explained entirely by pragmatic norms 

of communication. 

Experiment 5 

 Experiments 1-3 found that participants favored more compressed representations when 

the amount of information lost in compression was zero. This suggests that, all else being equal, 

participants assign some cost to storing a less compressed representation. Experiment 4 found that 

participants favored more compressed representations when the value of information lost in 

compression was zero. This suggests that the more valuable the information lost, the more willing 

participants should be to incur the representational costs of storing a less compressed 

representation. Schematically, this relationship between the cost of compression, on the one hand, 

and the value of lost information, on the other, can be written as follows: 

Propensity to Form Compressed Representation ∝ Cost of Non-Compression – VOLI 

It follows from these observations that it should be possible to manipulate the propensity to form 

compressed representations not only by manipulating VOLI (as we do in Experiment 4), but also 

by manipulating cost. In Experiment 5, we do precisely this, and find that participants are more 

inclined to store a compressed representation of a data set when: i) compression is less costly, and 

ii) the amount (and therefore, the value) of the information lost in compression is lower. In contrast 

with Experiments 1-4, our key dependent variable does not involve communication on a 
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participant’s part. Rather, it directly measures the level of compression at which an agent chooses 

to store information about a data set. 

Participants 

Participants were 202 adults recruited via Prolific. An additional 29 participants were 

excluded for failing comprehension checks. The sample of participants was 50% female and 50% 

male, with an age range of 18-76 and a mean age of 36. 

Materials and Procedures 

 Participants were told that they would be playing a role-playing game (RPG) in which their 

character began the game with 1000 health points and 1000 gold coins, and where the goal of the 

game was to end with as many health points and gold coins as possible. They were also told that 

over the course of the game, their character might sustain damage, reducing their total health 

points. To regain health points, they would be able to use gold coins to purchase remedies. Each 

remedy has a numerical strength, from 0-100, where the remedy’s strength denotes the number of 

health points that can be regained by taking the remedy. To illustrate, if a participant’s character 

has 800 health points after sustaining damage, and takes a remedy with a strength of 50, then the 

character will have 850 health points after taking the remedy. 

 Participants were shown a table with a list of remedies that they would potentially be able 

to buy, along with the strength of each remedy. The contents of each table depended on whether 

the participant had been randomly assigned to a “low loss” or “high loss” condition, and are shown 

in Table 6. The “low loss” condition is so-named because if this table were to be compressed into 

one that only compared the strength of mushrooms and flowers, less information about the 

differential strengths of remedies would be lost than if the same compression were performed in 

the “high loss” condition.  



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 60 

Table 6 

Data shown to Participants in Experiment 5. 
 

Low Loss High Loss 
Remedy Strength Remedy Strength 
Green Mushroom 82 Green Mushroom 99 
Yellow Mushroom 81 Yellow Mushroom 81 
Purple Mushroom 80 Purple Mushroom 63 
Yellow Flower 19 Yellow Flower 35 
Red Flower 17 Red Flower 1 

 

 Participants were told that, later in the game, they would not have access to the information 

in the table they were shown, even though that information would be relevant. However, they 

would be able to use gold coins to purchase one of two note cards summarizing the data in the 

table. They would have access to the information on their purchased note card throughout the 

course of the game. Those two note cards, along with their costs, were as follows: 

More Compressed: “Mushrooms are stronger than flowers.” Cost: 100 Gold Coins. 

Less Compressed: “Green mushrooms are strongest, followed by yellow mushrooms, then 

purple mushrooms, then yellow flowers, then red flowers.” Cost: [100/120] Gold Coins. 

The cost of the less compressed note card was manipulated between participants, and set to either 

100 or 120 gold coins, to reflect an additional cost of a less-compressed data representation of 

either 0 or 20. We predicted that, due to the increased loss of valuable information in the high loss 

category, participants would choose the less compressed causal representation more often in the 

high loss condition than in the low loss condition. We predicted further that this difference would 

be most pronounced when there is a positive cost to storing a less-compressed data representation; 

when storing less-compressed data comes with an explicit cost, agents will be more likely to incur 

that cost when doing so enables them to store a greater amount of valuable information.  
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 In the remainder of the experiment, we told participants that their character had incurred 

damage, and then asked them to state how many gold coins they were willing to pay for a yellow 

mushroom to counteract that damage. They had access to the information on their purchased note 

card when making this decision. They were then asked to rate how helpful they found their note 

card, and then asked if they could recall the strength of each remedy from the table they were 

shown. These subsequent dependent variables were collected for exploratory purposes, but were 

not part of our core analysis, which concerns participants’ choice of note card. 

Results 

Figure 7 

Proportion of participants in Experiment 5 choosing a less compressed data representation, by 
level of information loss and the additional cost of a less compressed representation. 

 

Note. Bars show 95% confidence intervals for proportions.  

 Figure 7 shows the proportion of participants selecting the less-compressed causal 

representation as a function of both the additional cost of the less compressed representation and 

the amount of valuable information lost in compression. As is clear from the figure, when there is 

no additional cost to storing a less compressed causal representation, a large majority of 
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participants elect to do so. However, once there is a substantive cost to storing a less compressed 

causal representation of data, we see significant variation as to which participants are willing to 

select a less-compressed representation, with participants much more likely to do so when the 

amount of valuable information lost in compression is low. 

 We performed a binary logistic regression for a dependent variable representing whether 

or not a participant chose the less compressed data representation, regressing that variable against: 

i) the additional cost of the less compressed representation (Cost), and ii) a binary variable 

representing whether a participant was assigned to the low and high loss condition (Loss). The low 

loss condition was coded as -1 and the high loss condition was coded as 1. We found that both 

variables were significant predictors of whether or not a participant chose the less compressed 

representation (Cost: , ; Loss: , ); participants with an additional 

cost of storing a less compressed representation were, all else being equal, less likely to do so, 

while participants in the high loss condition were, all else being equal, more likely to store a less 

compressed representation of the data, in keeping with our predictions. (In the Supplemental 

Materials, we report the results of another version of this experiment that replicates the effect of 

manipulating the cost of a less-compressed causal representation on participants’ propensity to 

store such a representation, but does not find a significant effect of the overall value of the 

information lost in compression on participants’ choice as to the level of compression at which 

they represent data.)  

Discussion  

The results of this experiment provide strong evidence that both the cost of storing a less 

compressed representation and the amount of valuable information lost in compression affect 

people’s propensity to store more or less compressed representations of their environment. Unlike 
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Experiments 1-4, the results of Experiment 5 cannot be explained in terms of participants adhering 

to communicative norms, as their selection of a note card summarizing the data for use later in the 

game was not a directly communicative act, but was instead a choice about how to store 

information at a particular level of compression. One can view the choice of note card as a choice 

on the participant’s part about how to represent the information in the data that they were shown 

within their extended mind (Clark & Chalmers, 1998), for subsequent use in navigating the 

environment of the role-playing game. Thus, the results of Experiment 5 speak in favor of our 

argument that agents choose causal representations by weighing a preference for compression 

against a desire to retain decision-theoretically relevant information.  

The results of Experiment 5 also speak to a potential alternative explanation of the findings 

from Experiment 4. The alternative explanation is that our findings do not reflect our posited trade-

off between compression and the value of information, but instead reflect the effects of adding a 

new feature (e.g., whether a medicine should be stocked) to a classification task. Specifically, 

Waldmann and Hagmayer (2006) show that participants presented with identical data about the 

causal capacities of exemplars nonetheless make different attributions of causal capacity 

depending on the categories they bring to the task and use to classify the exemplars. If the 

mechanisms identified by Waldmann and Hagmayer are applied to Experiment 4, then the four 

ingredients in the pharmaceutical example could be described as possessing the features shown in 

Table 7, where our manipulation of decision-theoretic threshold (50% vs. 80%) plays the role of 

an additional feature (stocked in the pharmacy or not) that shapes the categories participants use 

to classify exemplars. The two types of Reptol would then be grouped together when and because 

they both share the feature of being stocked at the pharmacy, rather than because of any effect of 

the change in value of the information lost in compression brought about by manipulating the 
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decision-theoretic threshold. However, a similar analysis cannot be used to explain the results of 

Experiment 5, since the cost of a less-compressed representation is not a feature of any of the 

remedies that participants compress over (e.g., changing the cost of the more detailed note card 

from 100 gold coins to 120 gold coins does not change any features of a yellow mushroom).22 

Table 7:  

Putative features of the four causes in the pharmaceutical vignette of Experiment 4. 

Ingredient p(e|c) (i.e., Effectiveness) Stocked at Pharmacy? 
Type-1 Reptol .85/.98 Yes 
Type-2 Reptol .7 Yes/No 
Type-1 Psylo .01 No 
Type-2 Psylo .01 No 

 

General Discussion 

 As established in the introduction, representing a causal system involves a trade-off 

between informativeness and compression. How do agents manage this trade-off? In this paper we 

have put forward a theoretical framework, using the formal apparatus of Bayesian networks and 

information theory, that quantifies how much information is lost in the move from a less 

compressed causal representation of an agent’s environment to a more compressed representation 

of the same environment. We propose that agents trade off an all-things-considered preference for 

compression against a desire to avoid losing information due to compression. In so doing, we are 

also able to offer a unified account of the proportionality and stability of causal claims. 

Experiments 1 and 2 support this part of our proposal. They show that when no information 

is lost in compression, people prefer causal claims embedded in more compressed models to those 

embedded in less compressed ones. When information loss due to compression is moderate, we do 

 
22 It is also worth noting that while the mechanism identified in Waldmann and Hagmayer (2006) could explain why 
participants were influenced by the threshold manipulation in Experiment 4, it is not clear how it could explain the 
interaction with information loss that was also observed. 
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not see a significant difference in peoples’ evaluations of claims embedded in more and less 

compressed models. By contrast, when information loss due to compression is considerable, we 

see a strong preference for causal claims that are embedded in less compressed, more detailed 

causal models. Whether compression was achieved by coarsening a causal variable 

(proportionality) or removing a background condition (stability) did not make a significant 

difference with respect to participants’ evaluations of causal claims, suggesting that our theoretical 

framework provides a unifying account of these important dimensions along which causal claims 

can be compared. Experiment 3 further corroborated this part of our proposal, while also showing 

that our account is able to explain results that are less well-explained in terms of causal contrast. 

We further elaborated our framework by considering how decision-theoretic factors may 

influence agents’ preferences over causal claims. Specifically, we introduced a framework for 

quantifying the value of the information lost in the move from a less compressed causal 

representation to a more compressed representation of the same environment, for an agent in a 

particular decision context. This allowed us to state precisely whether the information lost in a 

given compression is or is not valuable to a particular agent, in keeping with the broader theory 

that an agent’s construal of the causal structure of their environment is fundamentally informed by 

the prudential values of that agent. We tested this aspect of our framework in Experiment 4, which 

found that when participants evaluate causal claims, they engage in a trade-off between a 

preference for compression and a preference for valuable information, where the value of 

information is determined by the decision-theoretic context in which a particular data-generating 

process is presented to participants. Importantly, this preference for valuable information is 

continuous; the greater the amount of valuable information lost in a compression, the more 

negatively participants evaluate a compressed causal claim. In keeping with our hypothesis, 
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discussed in the introduction, that human agents are capable of selecting from among different 

possible causal models of their environment to fit a specific context, the results of Experiment 4 

suggest that this selection process is strongly influenced by the decision-theoretic structure of a 

given context in which a mental causal model is deployed. 

Finally, we noted that, while we took our dependent variables in Experiments 1-4 to 

measure the extent to which participants were representing their environment at a given level of 

compression, they may be alternatively interpreted as reflecting solely communicative norms. To 

bolster the case for a representational interpretation of our findings, we conducted Experiment 5, 

which measured the effect of both the cost of a less compressed representation and the value of 

the information lost in compression on a variable that is much more plausibly interpreted as 

measuring participants’ representational preferences than their communicative ones. This 

experiment found a significant effect of both the cost of a less compressed representation and the 

value of the information lost on participants’ propensity to represent data at a certain level of 

compression.  

The overall takeaway from our five experiments is as follows. When agents represent the 

causal structure of their environment, they have an extremely wide latitude with respect to how 

compressed that representation should be. Ultimately, the level of compression that an agent 

chooses for such a representation is determined by a trade-off wherein agents seek to minimize the 

loss of valuable information while maximizing compression. We note that in the follow-ups to 

Experiments 4 and 5 reported in the Supplemental Materials, we do not see a significant effect of 

the amount of information lost in compression on participants’ preferences as to the level of 

compression at which they represent data. Thus, based on the data collected here, we take it to be 

something of an open question whether, when a particular decision context is specified, 
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minimizing the loss of information involves a continuous preference for less information loss when 

the information loss is valuable, or a categorical preference for representations in which the value 

of lost information is zero and against representations in which the value of lost information is 

positive. (We speculate that information loss is likely to play some role even when the value of 

information is zero, given both the results of Experiments 4 and 5 and the fact that agents may 

have uncertainty regarding their own prudential values, or anticipate that they might change.) What 

is clear is that the tradeoff between informativeness and compression holds independently of 

whether compression is achieved by coarsening a causal variable or eliding a background 

condition. This suggests a common framework for understanding these two salient varieties of 

compression. 

 Finally, it is worth noting that while our discussion here pertains to explicitly causal 

representations of data-generating processes, it may be extended further to include non-causal 

predictive models that might be used in agential representation of the environment and cognition. 

As long as these models use random variables and involve predicting a particular outcome of 

interest, much of the formal apparatus and experimental paradigms developed here will remain 

applicable. Thus, we hope that our results here have provided a general framework for thinking 

through the relationship between information loss, compression, and prudential values as the chief 

drivers of the processes whereby humans and other agents construct formal representations of their 

environment, for use in both navigating and intervening upon the world in which they live.  

Relationship to Existing Model Selection Techniques 

In statistics, the tradeoff between model simplicity and informativeness is most commonly 

understood through the lens of various “information criteria”  used for model selection (Akaike, 

1998; Schwarz, 1978). Indeed, there are similarities between our discussion of causal model 
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selection and the much larger statistical literature on model selection via information criteria, in 

which the fundamental tradeoff is between selecting a model that captures all the data and a model 

that contains a small number of parameters. Nevertheless, there are also important differences. 

First, when we coarse-grain a causal variable in a model and leave the rest of the model unchanged, 

we do not necessarily change the number of statistical parameters in the model (e.g., the probability 

distribution over a continuously-valued variable may have the same number of parameters as a 

distribution over a discretization of that variable), though such coarsening may change the 

parameters that maximize the likelihood of the data. Nevertheless, in our framework a model with 

a more coarse-grained variable is considered to be more compressed, all else being equal, than the 

same model with a more fine-grained version of the same variable. In addition, we trade off 

compression or simplicity against the amount of information shared between causes and their 

effects, rather than the likelihood of a model given some set of observed data. Our measure is 

meant to be applied in cases where more and less compressed models of some system are all well-

supported by data, and yet there is nevertheless a trade-off between the simplicity of a model and 

the informativeness of cause-effect relationships within that model. That said, there are likely 

conditions under which our framework and other statistical techniques for model selection will 

make similar recommendations. We leave it to future work to examine these conditions in depth. 

Limits of the Current Study 

 While we take our experimental results to confirm the theoretical framework presented, we 

acknowledge that they have some important limitations. As noted at the outset, we focus on 

qualitative predictions derived from principled measures of compression and information loss, but 

we do not claim that our specific measures correspond to the algorithms by which humans compute 

these quantities. This leaves it to future work to develop and test quantitative process models. 
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Additionally, our experiments were conducted solely on U.S.-based participants recruited through 

on-line platforms, and so we are limited in the extent to which we can generalize to all agents faced 

with the task of creating causal models of the world. In particular, it is a largely open question 

whether individual scientists or groups of scientists would instantiate the same trade-offs observed 

here. In addition, our results are constrained to relatively simple causal scenarios that can be 

presented and understood in a matter of minutes, such that our results are of less significance in 

understanding deliberative, detailed causal understanding. This is a notable limitation if – as seems 

likely – variable choice interacts with information search in a dynamic process of inquiry, whereby 

current representations guide interventions, which in turn generate the data that revises 

representations. Investigating this interactive process is an important direction for future research.  

Directions for Future Work 

The current results suggest several intriguing avenues for future work that would generalize 

our findings to other areas of psychology. One such avenue emerges when we consider that the 

human capacity for compressed representation of causal structure begins very early in life. Future 

work in developmental psychology could show whether the process of selecting compressed 

representations of formal structure is fundamentally goal-oriented in very young humans. If this is 

the case, it would lend further support to the theory that our early-emerging and core commitments 

regarding the causal structure of data-generating processes are shaped by our pragmatic goals as 

agents. 

 Another intriguing line for future research concerns the psychology of social 

categorization. When we group people into categories such as race or gender, we situate them 

within a socially-constructed causal nexus based on group stereotypes. Our choices of social 

categories used to classify people are extremely ethically fraught, such that understanding why we 
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group people in the particular ways that we do is a central goal of social psychology. If we are 

correct in thinking that the classification schema used in causal reasoning generally are 

downstream of our prudential goals as agents, then work in social psychology might establish that 

the same holds for social classification. This could yield a new analysis of the ethics of 

stereotyping, according to which the moral valence of a particular classification schema for 

individuals is tied to the moral valence of the prudential goals that led to that schema.  

 On the formal and mathematical side, as acknowledged above, our measure of information 

loss is an application of rate distortion theories developed in other areas of cognitive science. In 

rate distortion theories, one often finds a setting of parameters such that agents’ preferences over 

more and less distorted or compressed information channels follow a “rate distortion curve” 

showing the optimal level of distortion (Zaslavsky et al., 2018). A potentially fruitful formal 

project would involve spelling out, in full formal detail, how our measure of information loss can 

be re-stated as a rate distortion curve, with the decision-theoretic value of information being used 

to set key parameters that determine the shape of the curve. Such a formal study would amount to 

a significant unification of the literature in rate distortion theory and the literature on causal 

variable choice. 

 These potential directions for future research, alongside our analysis of the results of the 

current studies, speak to the fruitfulness of our theoretical approach that combines information 

theory and decision theory to offer a unified analysis of causal structure selection in cognition. We 

believe that future applications of this approach may lead to a more comprehensive understanding 

of the relationship between goal-setting, planning, and representation of the environment in 

humans, non-human animals, and artificially intelligent agents. 
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Conclusion 

 We have proposed a theoretical framework for measuring the amount of information lost 

in the move from a less-compressed to a more-compressed causal model of an environment. This 

framework allows us to give a unified account of the proportionality and the stability of causal 

claims. This framework can additionally quantify and incorporate the decision-theoretic value of 

the information that is lost in compression. Over the course of four experiments, we demonstrated 

the empirical adequacy of this framework in predicting people’s evaluation and generation of 

causal claims. This suggests that, as per our hypothesis, human representations of the causal 

structure of the environment do trade-off valuable information against compression in a context-

dependent way. 
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Appendix A 

 In this appendix, we provide our full formal framework for measuring the amount of 

information that is lost in the move from one Bayesian network representing the causal structure 

of some system to a second Bayesian network, where this second Bayesian network amounts to a 

more compressed representation of a given target system than the first. This allows us to state 

precisely our claim that both the proportionality and stability of a causal claim can be defined in 

terms of information loss between causal models. It also provides the theoretical framework within 

which our first three experimental paradigms are situated.  

 

 



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 78 

Variables, Coarsenings, and Causal Bayesian Networks 

We begin with a probability space, which is a triple  in which  is a sample 

space of primitive possibilities (i.e., a set of possible worlds),  is an algebra on  (i.e., a set of 

subsets of  that is closed under union, complement, and intersection), and  is a probability 

distribution on  that satisfies the Kolmogorov axioms. A random variable  is 

function from the sample space into some set  (i.e., the range of the random variable). As stated 

in the introduction, in this paper we assume that random variables are surjective but not injective 

functions on the sample space, meaning that multiple possible worlds are often mapped to the same 

value of a random variable. This clarifies one sense in which representations that use random 

variables are compressions of their targets; they clump together many possible observations under 

a single label. A random variable is said to be measurable with respect to a probability space 

 if and only if for any , . This allows us to assign a probability to the 

event that the variable X takes the value x, using the equation . 

 For any random variable X that is measurable with respect to a probability space  

let  be an equivalence relation defined on Ω such that  if and only if . A 

random variable  is a coarsening of X if and only if, for any : i) if  then 

, and ii) there exists an  such that  and . If  is a coarsening of 

X, then X is a refinement of . The definition of coarsening captures the intuitive idea that coarser-

grained random variables define a more general compression of the possibility space on which 

they are defined than their more fine-grained counterparts. That is, all possibilities treated as 

equivalent by a random variable X are also treated as equivalent by its coarsening , but some 

possibilities treated as equivalent by 	are not treated as equivalent by X.  
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Moving to the use of Bayesian networks to represent causal structure, let  be a set of 

random variables that are each measurable with respect to a probability space . Let 

 be an acyclic set of ordered pairs, or edges, relating the variables in . These are represented 

pictorially as arrows in the causal graph depicting relations of direct causation from one variable 

to another. A causal Bayes net  is a pair (	 , ) that satisfies the following conditions: 

1. According to the probability distribution  in the probability space  with respect to which 

the Bayes net is defined, all variables are independent of their non-descendants, conditional 

on their parents (Markov condition).  

2. There is no set of edges  such that ( , ) satisfies the Markov condition 

(Minimality condition).  

3. No element of  is a coarsening of or identical to any other element of  (Co-

possibility condition). 

The Markov and Minimality conditions formalize the idea that the value of each variable in a 

causal Bayes net is determined by all and only its parents (i.e., its direct causes), plus an exogenous 

source of error not accounted for in the Bayes net and not correlated with the error in any other 

variables. The Co-possibility condition ensures that all functional relationships between variables 

in a causal Bayes net are indeed causal, rather than logical, in nature. 

 An important feature of a causal Bayes net is that it allows us to calculate the probability 

distribution over the variables in the Bayes net given one or more hypothetical interventions setting 

the value(s) of variables in the Bayes net, in keeping with the “do-calculus” of (Pearl, 2000). For 

any given causal Bayes net , we can calculate the probability distribution over any variable V 

in the set , given an intervention setting some set of variables 𝑋 to some set of values x, using 

the following formula: 
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where  denotes the values taken by the parents of V in . The idea here is that when the 

variable that the distribution is defined over is not intervened upon, the distribution is determined 

solely by the value taken by the parents of that variable. In practice, these values are not always 

known, but may be known if the variable(s) intervened upon include parents of the variable over 

which the distribution is defined. Where parents are not known, they are marginalized over. This 

allows us to derive the probability distribution that would be defined over any variable in the causal 

Bayes net, if any other variable in the same causal Bayes net were set to some value via an 

exogenous, “surgical'' intervention on the data-generating system. 

 For any given causal Bayes net, we can define an equivalence relation  on the sample 

space , such that  if and only if for all , . A causal Bayes net 

 is a more compressed representation of a given target process than an alternative 

causal Bayes net 	if and only if: i) for any , if , then 

and ii) there exists an , such that  but . Thus, in an 

analogy to the coarsening-of relation between variables, a more compressed Bayes net defines a 

more general equivalence relation over the sample space than a less compressed Bayes net defined 

over the same sample space, and representing the same underlying dynamics. 

Measuring Information Loss 

We are now in a position to introduce a formal measure of the amount of information that 

is lost about an effect of interest E, with respect to some sets of causal variables of interest  and 

, when we move from one Bayes net  to a more compressed Bayes net  representing the 



BUILDING COMPRESSED CAUSAL MODELS OF THE WORLD 81 

same data-generating process. Specifically, we define an information loss function 

 as follows: 

 

The probabilities  and  are respectively interpreted as the probability of an intervention 

setting the variables in  to the vector of values  and the probability of setting the variables in  

to the vector of values .  

Measuring Proportionality Using Information Loss 

Recall that one way of moving from a causal Bayes net  to a more compressed Bayes 

net  is by replacing a variable C in the graph  with its coarsening , and leaving all other 

variables unchanged. By measuring the amount of information that is lost in the move from  to 

, we can compare the amount of information that C communicates about some effect variable 

E to the amount of information that  communicates about the same variable E, thereby comparing 

the causal claims ‘C causes E’ and ‘  causes E’ with respect to their proportionality.  

More precisely, let  be a sequence of causal Bayes nets, such that the only 

difference between two causal Bayes nets  and  is the replacement of a single variable 

with a coarsening thereof.23 This yields a sequence of variables , with each  a 

variable in the causal Bayes net  and a coarsening of all variables . We then say that, in the 

context of a such a sequence, a variable  is proportional with respect to an effect variable E to 

the extent that  is relatively small for all . That is, proportional choices 

 
23 Formally, for any  there is a bijection 𝑠uch that where  is a coarsening 
of , and for all , . There is also a bijection  such that, for any 

: i) if , then , ii) if , then , iii) if , then 
and iv) if , then . 
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of causal variables are those that preserve information about the conditions under which an effect 

variable E will change, as compared to more fine-grained alternatives.  

Measuring Stability Using Information Loss 

Recall from our earlier discussion that we can measure the stability of a causal relationship 

 embedded in a particular causal Bayes net by removing a set of variables  from that Bayes 

net and assessing how much information is lost in the move from the original Bayes net to the 

Bayes net that is created by removing the background variables. This claim can now be made 

precise, using our proposed measure of information loss. Let  be a causal Bayes 

net containing a cause C, an effect E, and a set of background variables . Let 

be a causal Bayes net with the same structure as , but with all variables in 𝑩 and all edges going 

into or out of variables in  removed.24 The causal relationship between C and E is stable with 

respect to background condition  to the extent that the value of is 

low. That is, the relationship  is stable with respect to  to the extent that the average amount 

of information about E that is communicated by interventions on both C and the variables in  is 

similar to the average amount of information about E that is communicated solely by interventions 

on C. 

 
24 That is,  and .  


