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Abstract

The same causal system can be accurately described in many
ways. What governs the evaluation of these choices? We pro-
pose a novel, formal account of causal evaluation according to
which evaluations of causal claims reflect the joint demands of
maximal informativeness and maximal compression. Across
two experiments, we show that evaluations of more and less
compressed causal claims are sensitive to the amount of in-
formation lost by choosing the more compressed causal claim
over a less compressed one, regardless of whether the com-
pression is realized by coarsening a single variable or by elid-
ing a background condition. This offers a unified account of
two dimensions along which causal claims are evaluated (pro-
portionality and stability), and contributes to a more general
picture of human cognition according to which the capacity to
create compressed (causal) representations plays a central role.
Keywords: causation; compression; proportionality; stability.

Introduction
Not all causal claims are created equal. Consider a fictional
mushroom, the Drol, that tends to develop bumpy stems when
planted in high-mineral soil. The claim ‘planting Drol in
high-mineral soil causes them to have bumpy stems’ is an
example of a type-level causal claim. Yet it is only one of
many ways to describe the same causal system. Suppose that
high-mineral soil can also be either high or low in sodium,
with this distinction making no difference to the likelihood of
a Drol developing bumpy stems. Under these conditions, the
claim ‘planting Drol in high-mineral, high-sodium soil causes
them to have bumpy stems,’ is still true, but in the termi-
nology of Woodward (2008, 2010, 2018a, 2018b, 2021), the
original claim is more appropriate since it expresses a more
proportional relationship between cause and effect. That is,
by describing the cause-effect relationship in a manner that
approximates a one-to-one function, it encodes a more infor-
mative relationship between cause and effect, which renders
it more useful for causal reasoning (Lien & Cheng, 2000).

While ‘planting Drol in high-mineral soil causes them to
have bumpy stems’ is more informative than less proportional
alternatives, it may not be maximally informative. In particu-
lar, it may omit factors that moderate the causal relationship
between the mineral content of soil and a Drol having bumpy
stems. Consider a scenario in which Drol that are planted in
high-mineral soil and watered with salt water are much more
likely to develop bumpy stems than Drol planted in high-
mineral soil and watered with fresh water. In the terminol-
ogy of Woodward (2010, 2018b, 2021), under these condi-

tions the claim ‘planting Drol in high-mineral soil and water-
ing them with salt water causes them to have bumpy stems’
would be more stable, or robust with respect to variation in
unspecified background conditions, than the alternative that
omits any specification of the kind of water used when plant-
ing Drol. Data suggest that human causal reasoning is sen-
sitive to stability, with more stable causal claims evaluated
more favorably (Vasilyeva, Blanchard, & Lombrozo, 2018).

Why are some causal descriptions judged better than oth-
ers? And more specifically, why might proportionality and
stability guide our evaluations of causal claims? Here we
propose a novel, unified account of these phenomena. The
core idea is that causal claims can be understood as balanc-
ing demands for maximal informativeness, on the one hand,
and maximal compression, on the other. We formalize this
idea with mathematical definitions of proportionality and sta-
bility according to which both properties of a causal claim
can be measured by assessing the degree to which that claim
achieves a loss-minimal compression of a more fine-grained
description of the same data. Like other trade-offs in human
cognition, such as that between cognitive economy and in-
formativeness in classification (Rosch, 1999), the result is a
‘basic level’ of causal description - one that most efficiently
meets our informational needs in a given situation.

Our approach has two important implications. First, and
consistent with prior work on evaluations of causal claims,
our formalizations can capture the graded nature of causal
judgment (Cheng, 1997; Spellman, 1997; Lombrozo, 2007,
2010; Icard, Kominsky, & Knobe, 2017; Morris et al., 2018;
Quillien, 2020; Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2021; O’Neill, Henne, Bello, Pearson, & De Brigard,
2021). Within the interventionist, Bayesian network-based
approach to causal inference, explanation, and description
made prominent by Pearl (2000) and Spirtes, Glymour and
Scheines (2000), we are licensed to draw causal conclu-
sions of the form ‘X causes Y ,’ where X and Y are types
of events, just in case the Bayesian network representing the
data-generating process is such that there is a directed path
from a random variable representing types of events X to a
random variable representing types of events Y . We hold that,
in addition, evaluations of causal descriptions have a graded
structure, and that this graded structure can be captured by
our analyses of proportionality and stability.

Second, our approach is consistent with the thesis that pro-



portionality and stability are two instances of the same gen-
eral property of a causal claim, namely the degree to which
the claim minimizes information loss due to compression. In
this way our proposal departs from prior treatments of propor-
tionality and stability, and offers a unifying framework that
makes additional predictions about causal judgments in ev-
eryday cognition and in scientific practice. This allows us to
subsume our understanding of evaluations of causal claims
under a broader cognitive framework in which compression
plays a central role (Keil, 2006; Pacer & Lombrozo, 2017;
Wilkenfeld, 2019; Kirfel, Icard, & Gerstenberg, 2021).

In what follows, we offer background on the causal Bayes
net formalism and its extension to proportionality and stabil-
ity, with the introduction of information loss. We also re-
view prior empirical work on proportionality and stability in
human causal reasoning. We then present results from two
experiments in which participants are asked to evaluate vari-
ous causal descriptions of the same underlying system, where
these causal claims contain different levels of detail, and im-
ply different levels of information loss as a result of compres-
sion. In keeping with our hypothesis, we find that participants
evaluate less detailed causal claims similarly to more detailed
causal claims when replacing the more detailed claim with
the less detailed one results in minimal information loss.

Background
Coarsening and Causal Bayes Nets A probability space
is a triple (Ω,Σ, p), where Ω is a sample space, Σ is an al-
gebra on Ω (i.e., a set of subsets of Ω closed under union,
intersection, and complement), and p : Σ → [0,1] is a prob-
ability distribution on Σ. A random variable is a function
X : Ω → RX , where the range RX of X is any set. A random
variable is measurable with respect to a probability space
(Ω,Σ, p) iff, for any x ∈ RX , X−1(x) ∈ Σ.

For any random variable X that is measurable with respect
to a probability space (Ω,Σ, p), let ∼X be an equivalence re-
lation defined on Ω such that ω ∼X ω′ iff X(ω) = X(ω′). A
second random variable X̃ that is measurable with respect to
(Ω,Σ, p) is a coarsening of X iff: i) for any ω,ω′ ∈ Ω, if
ω ∼X ω′ then ω ∼X̃ ω′, and ii) there exists a ω,ω′ ∈ Ω such
that ω ∼X̃ ω′ but ω ̸∼X ω′. If X̃ is a coarsening of X , then
X is a refinement of X̃ . This definition captures the intuitive
idea that X̃ is a coarsening of X iff the partition of possibility
space achieved by X̃ is such that any possibilities treated as
equivalent by X are also equivalent according to the coarsen-
ing X̃ , but that some possibilities treated as equivalent by X̃
are treated as distinct by the more fine-grained X .

Let VP be a set of random variables that are all measur-
able with respect to the same probability space P = (Ω,Σ, p).
Let E be an acyclic set of ordered pairs, or edges, relating
the variables in E . The set of edges E allows us to define
parent and descendant relations between variables in the ob-
vious way. A causal Bayes net is a pair GP = (VP ,E) such
that: i) according to the probability distribution p, all ele-
ments of VP are independent of their non-descendants, con-

ditional on their parents (Markov Condition), ii) there is no
set of edges E∗ ⊂ E such that (VP ,E∗) satisfies the Markov
condition according to the probability distribution p in the
probability space with respect to which all elements of VP
are measurable (Minimality Condition), and iii) no variable
in VP is a coarsening of or identical to any other variable
in VP (Co-possibility Condition). These conditions ensure
that the graphical structure induced by E represents all causal
dependencies between the variables in VP without any ex-
cess edges, and that any dependencies between variables are
causal, rather than logical, in nature. A variable X causes Y
according to GP just in case Y is a descendant of X .

For any given causal Bayes net GP , we can calculate the
probability distribution over any variable V in the set VP ,
given an intervention setting some set of variables X to some
set of values x, using the following formula:

pGP (v|do(x)) =


p(v|parGP

(V )) if V ̸∈ X
1 if V ∈ X and v ∈ x
0 otherwise

(1)

where parGP
(V ) denotes the values taken by the parents of V

in GP . This allows us to derive the probability distribution
that would be defined over any variable in the causal Bayes
net, if any other variable in the same causal Bayes net were
set to some value via an exogenous, “surgical” intervention
on the data-generating system.

Measuring Information Loss Let GP be a causal Bayes
net, and let G ′

P be a graph generated by replacing the set of
variables X with the set of variables X′, and the set of edges
E with the set of of edges E ′. All variables in both Bayes nets
are measurable with respect to the same probability space P .
Thus, they are taken to represent the same underlying data-
generating process. The information loss due to the change
from GP to G ′

P , with respect to an effect variable Y and the
change in variables from X to X′, is given by the equation

L(GP ,G ′
P ,X,X′,Y,q)

= ∑
x

q(do(x))∑
y

p(y) log2
p(y)

pGP (y|do(x))

− ∑
x′

q(do(x′))∑
y

p(y) log2
p(y)

pG ′
P
(y|do(x′))

(2)

where q is a probability distribution over possible interven-
tions on X and X′. In information-theoretic language, infor-
mation loss is the difference between the average Kullback-
Leibler divergence between the marginal distribution over Y
and the distribution over Y given an intervention on GP set-
ting X to x, and the average Kullback-Leibler divergence be-
tween the marginal distribution over Y and the distribution
over Y given an intervention on G ′

P setting X′ to x′. Where
information loss is negative, information is gained rather than
lost in the move from GP to G ′

P .

Proportionality According to Woodward, a causal rela-
tionship is proportional to the extent that it is stated at the



“level [of causal description] that is most informative about
the conditions under which the effect will and will not oc-
cur” (2021, p. 389). For Woodward, the hierarchy of lev-
els of description with which a causal relationship can be
stated corresponds to a sequence of “vertically” related causal
variables, where each causal variable in the sequence is a
coarsening of the previous causal variables (2021, p. 371).
This can be made precise in terms of information loss. Let
GP = (G1

P , . . . ,G
n
P ) be a series of causal Bayes nets, such

that the only difference between two causal Bayes nets Gi
P

and Gi+1
P is the replacement of a single variable with a coars-

ening thereof.1 This yields a sequence of variables C =
(C1, . . . ,Cn), with each Ci a variable in the causal Bayes net
Gi

P and a coarsening of all variables C j<i. We then say that,
in the context of a such a sequence, a variable Ci is propor-
tional with respect to an effect variable Y to the extent that
L(G j

P ,G
i
P ,{C j},{Ci},Y,q) is relatively small for all j < i.

That is, proportional choices of causal variables are those that
preserve information about the conditions under which an ef-
fect variable Y will change, as compared to more fine-grained
alternatives. Note that in this paper we only consider compar-
isons of proportionality between causal claims with different
causal variables and a common effect variable, though one
can in principle compare causal relationships that differ with
respect to both cause and effect in terms of proportionality.
We expect that our results generalize to such comparisons.

Stability Recall that the stability of a causal relationship is
its robustness to changes in background conditions. This im-
plies that if a causal Bayes net GP contains a stable causal
relationship between a cause X and effect Y , then one can
eliminate variables representing background conditions from
GP without losing any information contained in the relation-
ship between interventions on X and changes in Y . This ad-
mits of straightforward formalization in terms of information
loss. Let GP = (VP ,E) be a causal Bayes net containing
a cause X , an effect Y , and a set of background variables
B. Let G−B

P = (V −B
P ,E−B) be a causal Bayes net such that

V −B
P = VP \B and E−B = E \ {(W,Z) : W ∈ B∨ Z ∈ B}.

That is, G−B
P is just GP with all variables in B removed.

The causal relationship between X and Y is stable with re-
spect to background condition B to the extent that the value
of L(GP ,G−B

P ,{X}∪B,{X},Y,q) is low.

Summary The preceeding formalizations of the propor-
tionality and stability of causal relationships show how the
task of measuring both properties can be subsumed under a
more general measure of information loss. In what follows,
we present experiments designed to test whether participants’
evaluations of the quality of a compressed causal claim are

1Formally, for any i < n there is a bijection f : V i
P → V i+1

P such
that f (Ci) =Ci+1, where Ci+1 is a coarsening of Ci, and for all Vi ∈
V i

P \{Ci}, f (Vi) =Vi. There is also a bijection g : E i → E i+1 such
that, for any g((W,Z)) = (Wg,Zg): i) if W =Ci, then Wg =Ci+1, ii)
if Z = Ci, then Zg = Ci+1, iii) if W ̸= Ci, then Wg = W , and iv) if
Z ̸=Ci, then Zg = Z.

predicted by the amount of information that is lost by choos-
ing that claim over a less compressed alternative, where a
causal claim is compressed to the extent that it elides ei-
ther fine-grained details about the cause of some effect or the
background conditions moderating the relationship between
cause and effect.

Previous Work From a theoretical perspective, the work
that is closest to our framework consists of previous attempts
to quantify properties of causal relationships in Bayesian
networks using tools from information theory. These in-
clude specific attempts to measure proportionality and stabil-
ity (Pocheville, Griffiths, & Stotz, 2017), as well as attempts
to measure other properties of causal relationships, such as
power, abstraction, strength, or specificity using formalism
from information theory (Ay & Polani, 2008; Korb, Nyberg,
& Hope, 2011; Griffiths et al., 2015; Hoel, 2017; Beckers
& Halpern, 2019; Bourrat, 2021). However, none of these
approaches argue, as we do, that measurements of the pro-
portionality and stability of a causal relationship can both be
expressed in terms of information loss.

On the experimental side, Lien and Cheng (2000) present
evidence effectively showing that humans prefer to justify
their inferences using more proportional causal claims, al-
though they do not use the term ‘proportional’. By contrast,
Bechlivanidis, Lagnado, Zemla, and Sloman (2017) find that
participants prefer causal explanations with more detail to
those with less detail, even when the less detailed explana-
tions are just as proportional. However, their experiments
ask participants to evaluate explanations of specific events
rather than type-level causal claims. Vasilyeva, Blanchard,
and Lombrozo (2018) show that participants are more will-
ing to endorse causal and explanatory claims with high stabil-
ity, even when other factors are held fixed. However, to our
knowledge, there is no work aiming to empirically investigate
whether there is a unifying explanation of the preference for
both proportional and stable causal claims.

Experiments

Experiment 1

In Experiment 1, we hypothesized that when more informa-
tion is lost when a less compressed causal claim is replaced
with a more compressed causal claim, the more compressed
claim will be evaluated less positively by participants rela-
tive to the less compressed claim. To test this, we presented
participants with a description of the results of controlled ex-
periments on a fictional variety of mushroom, fly, or rock, and
asked them to rate how good it would be to include various
claims in a summary of the described results. These claims
included more and less compressed causal claims. We ma-
nipulated the vignette used, the amount of information loss
realized by the more compressed causal claim, and whether
the compression was achieved by coarse-graining a variable
(thus manipulating proportionality) or eliding a background
variable (thus manipulating stability).



Vignette Effect Primary Cause Secondary Cause Background Condition
Drol (Mushroom) Bumpy Stems High/Low Mineral Soil High/Low Sodium Soil Watered with Salt/Fresh Water
Bricofly (Insect) Blue Wings Warm/Cold Tank Humid/Dry Tank Water Spray/Dry Air Blow

Chapagite (Rock) Fissures Warm/Cold Water Salt/Fresh Water Wrapped in Saline/Plain Cloth

Table 1: Structure of vignettes used in both experiments.

Participants Participants were 450 adults recruited via Pro-
lific. 150 additional participants were excluded for fail-
ing comprehension checks or for rating poor causal claims
non-negatively. For both studies, participation was re-
stricted to users with a US-based IP address and a 95%
rating based on at least 100 previous studies. Both
studies were pre-registered, and IRB approval was ob-
tained from Princeton University. Data, stimuli, and
pre-registrations are available at https://osf.io/prmu6/
?view only=90aee64c5b0943b0a1afbabebcc268e6.

Materials and Procedures Participants read a vignette in
which they learned about a novel causal system, including the
results of experiments involving that system. For example, in
the mushroom vignette, participants were presented with one
of the following descriptions of results of experiments on the
“Drol” mushroom:

D-1: a) x% of all Drol planted in high-mineral, high-
sodium soil have bumpy stems; b) 70% of all Drol
planted in high-mineral, low-sodium soil have bumpy
stems; c) 1% of all Drol planted in low-mineral, high-
sodium soil have bumpy stems; d) 1% of all Drol planted
in low-mineral, low-sodium soil have bumpy stems.

D-2: a) x% of all Drol planted in high-mineral soil and
watered with salty water have bumpy stems; b) 70% of
all Drol planted in high-mineral soil and watered with
fresh water have bumpy stems; c) 1% of all Drol planted
in low-mineral soil and watered with salty water have
bumpy stems; d) 1% of all Drol planted in low-mineral
soil and watered with fresh water have bumpy stems.

The value of x was varied between subjects and set at either
70, 85, or 98. Participants were then asked to rate, on a scale
from -3 (very bad) to 3 (very good), how good it would be to
include each of the following statements in a summary of the
findings of the descriptions given above:

• Compressed: Planting Drol in high-mineral soil causes
them to have bumpy stems.

• High: Planting Drol in [high-mineral, high-sodium
soil/high mineral soil and watering them with salty water]
causes them to have bumpy stems.

• Low: Planting Drol in [high-mineral, low-sodium soil/high
mineral soil and watering them with fresh water] causes
them to have bumpy stems.

For participants shown Description 1, the claim Compressed
is a compression achieved by coarsening a causal variable.

For participants shown Description 2, the claim Compressed
is a compression achieved by eliding a background variable.2

The values of x correspond to information loss amounts for
Compressed of 0, .03, and .31 respectively, assuming a uni-
form distribution over possible interventions. Vignettes in-
volving flies and rocks followed an identical structure (see
Tab. 1). Participants were randomly assigned to one of eigh-
teen possible conditions, which differed with respect to which
of the three vignettes they were shown, whether they were
asked to evaluate a compressed claim achieved by coarsening
a causal variable (proportionalilty) or eliding a background
variable (stability), and the amount of information loss inher-
ent in compression. Finally, participants were also asked to
evaluate three poor causal claims, constructed by substituting
the value of the primary causal factor (e.g., changing high-
mineral to low-mineral). These were included to help anchor
the scale and verify participant understanding; we do not dis-
cuss them further here in the interest of space.

Results To test whether evaluation of less compressed
causal claims relative to more compressed causal claims in-
creased as a function of information loss due to compression,
we computed (as pre-registered) two difference scores:

• V-A. The difference between the participant’s evaluation
of Compressed and their evaluation of High (e.g., the dif-
ference between the evaluation of ‘Planting Drol in high-
mineral soil causes them to have bumpy stems’ and the
evaluation of ‘Planting Drol in high-mineral, high-sodium
soil causes them to have bumpy stems’).

• V-B. The difference between the participant’s evaluation
of Compressed and a uniform average of their evaluations
of High and Low (e.g., the difference between the evalua-
tion of ‘Planting Drol in high-mineral soil causes them to
have bumpy stems’ and the average evaluation of ‘Plant-
ing Drol in high-mineral, high-sodium soil causes them
to have bumpy stems’ and ‘Planting Drol in high-mineral,
low-sodium soil causes them to have bumpy stems’).3

2On our formal analysis, both the coarsening of a causal variable
and the elision of a background condition can be expressed as com-
pressions of a partition over the same sample space, such that there
is no difference between these two kinds of compression. We have
fashioned our examples to match what is understood in the literature
(e.g. Woodward (2010)) as a distinction between a refinement of the
same variable and an elision of a background condition.

3Due to an error, the equation for V-B was pre-
registered for both experiments as Evaluation of Compressed −
.5(Evaluation of High−Evaluation of Low). However, the correct
equation is Evaluation of Compressed − .5(Evaluation of High +
Evaluation of Low).

https://osf.io/prmu6/?view_only=90aee64c5b0943b0a1afbabebcc268e6
https://osf.io/prmu6/?view_only=90aee64c5b0943b0a1afbabebcc268e6


Figure 1: Mean evaluations of claims in Experiment 1, with
bars showing 95% CIs. ‘Loss’ corresponds to information
loss due to compression inherent in choosing Compressed
over High and Low.

The score V-B measures a participant’s preference for a more
compressed claim over either of the more detailed claims.

We regressed these dependent variables against indepen-
dent variables denoting the assigned vignette (Vignette),
whether the more compressed claim manipulated proportion-
ality or stability (Condition), and the amount of information
loss (Loss), as well as all possible interactions. The regres-
sions revealed that only Loss was a significant predictor of
V-A (β = −3.07, p < .001) and V-B (β = −1.81, p < .001).
Notably, we found no evidence of a significant effect of Con-
dition on these dependent variables (V-A: β = .02, p = .769;
V-B: β = .04, p = .659), nor did we find any significant inter-
action effects between Condition and any other independent
variables.

As a sanity check, we also analyzed the difference between
the participant’s evaluation of High and their evaluation of
Low (V-C). As expected, only Loss was a significant predictor
of V-C, with the value of V-C increasing as the probability of
the effect given the description of the cause in High increases
with Loss (β = 2.52, p < .001).

In an exploratory analysis, we measured the percentage
of participants who strictly preferred Compressed to High
across all three loss levels. This percentage was approxi-
mately 36% when Loss=0, 21% when Loss=.03, and 10%
when Loss=.31. Mixed ANOVA for each value of Loss found
that at Loss=0, Compressed was rated more highly than both
High (η2 = .025, p = .002) and Low (η2 = .041, p < .001).
When Loss=.03, High was not rated significantly higher than
Compressed (η2 = .005, p = .156), but was rated higher
than Low (η2 = .050, p < .001). When Loss=.31, High was
rated significantly higher than both Compressed (η2 = .058,
p < .001) and Low (η2 = .153, p < .001).

Discussion These results provide strong evidence in favor
of the claim that participants’ relative evaluations of more and
less compressed causal claims are partially governed by the

amount of information loss that is inherent in the more com-
pressed causal claim. As can be seen in Fig. 1, which plots
participants’ absolute evaluations of each causal claim at each
loss level, when there is no information loss, participants
evaluate more compressed causal claims significantly more
highly than less compressed causal claims, suggesting that
people award simplicity and penalize unnecessary complex-
ity in their evaluation of causal claims. When information
loss is moderate, there is no significant difference between
participants’ evaluations of more and less compressed causal
claims, suggesting that some participants prefer a compressed
claim even when some information loss is inherent. That no
evidence was found for any effect of Condition supports the
thesis that the proportionality and stability of a causal claim
are both measured by information loss.

Experiment 2

In Experiment 1, participants evaluated the three key causal
claims (Compressed, High, and Low) on the same screen.
This could have introduced unintended task demands. For in-
stance, participants may have felt that endorsing Compressed
was redundant with the endorsement of both High and Low,
or that endorsing Compressed (when the option to select more
fine-grained options was available) implied the causal irrele-
vance of the unspecified factor. To ensure that the results of
Experiment 1 were robust to such considerations, we repli-
cated the study with the amendment that participants were
shown the same data twice, and asked first to evaluate Com-
pressed and second to independently evaluate High and Low.

Participants 483 adults were recruited via Prolific. 117 ad-
ditional participants were excluded for failing comprehension
checks or rating poor causal claims non-negatively.

Materials and Procedures The procedure was identical to
that used in Experiment 1 with three exceptions. First, as
described above, participants were asked to evaluate Com-
pressed as part of a separate task than their evaluation of
High and Low. Second, sentence (b) in both descriptions used
in the first experiment was amended to replace ‘70%’ with
‘55%’. Analogous replacements were made for the other two
vignettes. Third, the value of x in (a) and (b) was varied be-
tween subjects and set at either 55, 85, or 98, leading to infor-
mation loss amounts of 0, .07, and .41 respectively. Thus, we
replicated Experiment 1 for a different range of loss values.

Results We performed the same regressions as in Experi-
ment 1. Loss was a significant predictor of all three depen-
dent variables (V-A: β = −3.39, p < .001, V-B: β = −1.51,
p < .001, V-C: β = 3.76, p < .001). Fig. 2 shows the re-
lationship between Loss and participants’ absolute evalua-
tions of Compressed, High, and Low. Only the evaluation of
High is shown to be significantly linearly predicted by Loss
(β = 3.11, p < .001). This suggests that the relationship be-
tween Loss and the three dependent variables is driven pri-
marily by an increased evaluation of High that is not accom-
panied by a changing evaluation of Compressed or Low.



In a further replication of Experiment 1, Condition was not
a significant predictor of any of the three dependent variables
measured (V-A: β = .162, p = .055; V-B: β = .125, p = .098;
V-C: β = −.075, p = .327). We did observe that Condition
was a significant predictor of evaluations of High (β=−.206,
p = .014). However, we do not draw any conclusions from
this result given that it does not seem to have impacted any of
the crucial differences between evaluations of causal claims.

In an exploratory analysis, we measured the percentage of
participants who strictly preferred Compressed to High across
all three loss levels. This percentage was approximately 39%
when Loss=0, 10% when Loss=.07, and 2% when Loss=.41.
Mixed ANOVA for each value of Loss found that at Loss=0,
Compressed was rated more highly than both High (η2 =
.044, p < .001) and Low (η2 = .048, p < .001). At Loss=.07,
High was rated more highly than Compressed (η2 = .036,
p < .001) and Low (η2 = .220, p < .001). At Loss=.41,
High was rated more highly than Compressed (η2 = .179,
p < .001) and Low (η2 = .442, p < .001).

Discussion The results of Experiment 2 replicate the posi-
tive results of Experiment 1 at a different range of loss levels
and under conditions such that Compressed is evaluated sep-
arately from High and Low. This renders concerns about the
pragmatics of the task less plausible.

General Discussion
These experiments provide evidence that when evaluating
more and less compressed causal descriptions of the same
process, we engage in a trade-off between compression on
the one hand and information loss on the other. Our findings
support a unified account of proportionality and stability, and
take a first step towards understanding the relationship be-
tween causal cognition and compression. The trade-off we
observe may also be relevant to people’s evaluations of non-
causal claims, such as descriptions of statistical patterns.

Nevertheless, alternative explanations of our findings re-
main plausible. To illustrate, consider the causal power mea-
sure due to Cheng (1997). For two events c and e, the causal
power of c with respect to e is p(e|c)− p(e|¬c). If we let e be
the development of bumpy stems in Drol and let c be either
planting Drol in high-mineral, high-sodium soil or planting
Drol in high-mineral soil and watering them with salty wa-
ter, then as Loss increases in both of the current experiments,
so too does the implicit causal power of c with respect to e
in either version of the claim High. In both experiments, the
correlation between all three dependent variables and Loss
was driven by an increased absolute evaluation of High as
Loss increased. Thus, our results are consistent with the in-
terpretation that participants evaluate High more favorably
as the power of the causal relationship that it describes in-
creases, while their absolute evaluations of Compressed and
Low remain fixed. However, this interpretation also predicts
an increasingly positive evaluation of Compressed as Loss
increases, which we do not see in our results. Also, causal
power does not explain why, when Loss=0, participants pre-

Figure 2: Mean evaluations of claims in Experiment 2, with
bars showing 95% CIs. ‘Loss’ corresponds to information
loss due to compression inherent in choosing Compressed
over High and Low.

fer more compressed causal claims. That said, further testing
is needed to fully rule out a causal power interpretation.

Another direction for future work is to investigate the de-
terminants of people’s tolerance for information loss when
evaluating compressed causal claims. The exploratory anal-
yses reported in the results of both experiments show that at
least some participants prefer more compressed causal claims
to less compressed ones, even when the more compressed
claim leads to information loss. Theoretical work by Brodu
(2011), Kinney (2019), and Kinney and Watson (2020) argues
that prudential factors such as an agent’s interest in realizing
certain values of an effect variable and the value of the in-
formation provided by a causal variable determine the overall
quality of compressed causal claims.

We also plan to test how both information loss and agency
impact participants’ open-ended summaries of causal pat-
terns. These studies will measure the extent to which partic-
ipants penalize more detailed causal claims because they are
read as ruling out alternatives (e.g., participants may assume
that the claim ‘planting Drol in high-mineral, high-sodium
soil causes them to develop bumpy stems’ implies that plant-
ing Drol in high-mineral, low-sodium soil does not cause
them to develop bumpy stems). While pragmatic factors are
sure to play a role in communication, we nevertheless antici-
pate that the trade-off between informativeness and compres-
sion describes causal representation more generally, in both
intra- and interpersonal contexts.
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