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A B S T R A C T   

Explanations highlight inductively rich relationships that support further generalizations: if a 
knife is sharp because it is for cutting, we can infer that other things for cutting might also be sharp. 
Do children see explanations as good guides to generalization? We asked 108 4- to 7-year-old 
children to evaluate mechanistic, functional, and categorical explanations of object properties, 
and to generalize those properties to novel objects on the basis of shared mechanisms, functions, 
or category membership. Children were significantly more likely to generalize when the expla
nation they had received matched the subsequent basis for generalization (e.g., generalizing on 
the basis of a shared mechanism after hearing a mechanistic explanation). This effect appeared to 
be driven by older children. Explanation-to-generalization coordination also appeared to vary 
across relationships, mirroring the development of corresponding explanatory preferences. These 
findings fill an important gap in our understanding of how explanations guide young children’s 
generalization and learning.   

1. Introduction 

A fidget spinner is an object with a ball bearing that allows it to spin with the flick of a finger, with the goal of helping the user to 
relieve nervous energy. A child encountering this object for the first time might notice different relations between its properties: a ball 
bearing is the mechanism that enables spinning (a mechanistic relation); spinning serves the function of relieving nervous energy (a 
functional relation); finally, all these properties are tied to being a member of the category “fidget spinners” (a categorical relation). 
Each relation can potentially support generalizations to new objects. For instance, other objects might spin in a similar way because 
they have ball bearings (the mechanistic relation), because they are for relieving nervous energy (the functional relation), or because 
they are fidget spinners (the categorical relation). How do children navigate this space of possibilities? 

In the current paper, we test the hypothesis that explanations help children generalize from known to novel cases by highlighting 
some relations as more inductively powerful than others. Specifically, the child who learns that the object spins “because it has a ball 
bearing” might be more inclined to generalize the property of spinning on the basis of the mechanistic relation than the child who 
learns that it spins “because it is a fidget spinner,” even if both children know that all three relations (mechanistic, functional, and 
categorical) obtain (see also Lombrozo & Wilkenfeld, 2019). 

This example suggests that when we explain, we do more than identify true claims about a particular case: we highlight gener
alizable patterns that extend beyond the observation being explained (Heider, 1958; Quine & Ullian, 1970). Indeed, according to the 
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“Explanation for Export” proposal (Lombrozo & Carey, 2006), one function of explanation is to support generalization beyond the 
specific case being explained. 

Consistent with these proposals, empirical work with adults suggests that explanations play an important role in guiding gener
alization. For example, Sloman (1994) found that adults were more likely to generalize a property from a known to a novel case when 
the explanation for the known case plausibly held for the novel case. Likewise, Vasilyeva and Coley (2013) showed that an individual’s 
explanation for a property predicted the generalizations they would subsequently suggest (e.g., if substance B6 is found in ducks, what 
else is likely to have substance B6?). They additionally found that different types of explanations corresponded to different types of 
generalizations. When participants generated category-based or functional explanations (e.g., ducks have it because “it’s a bird thing” 
/ because “it protects them from the cold”), they tended to project the property to targets related categorically rather than ecologically 
(e.g., to “other birds” rather than “their predators”). However, this tendency was reversed for mechanistic explanations (e.g., “they got 
it from their food”), which were associated with inferences based on ecological relations. Similarly, in an experimental task, Lombrozo 
and Gwynne (2014) found that participants who received either a mechanistic or functional explanation favored generalizations that 
preserved the relationship featured in the explanation. 

Further reinforcing the connection between explanation and generalization in adult cognition, Vasilyeva, Wilkenfeld, and Lom
brozo (2017) documented the reverse direction of influence: people’s expectations about future generalizations affected how much 
they liked different explanations. Participants were led to expect that they would later make inferences about the presence or absence 
of a property based on information about causal mechanisms, functions, or category membership. When asked to rate mechanistic, 
functional, and categorical explanations, participants favored explanations that were based on the kind of information they expected to 
be useful for their subsequent generalization decisions. 

Although there is good evidence that adults can use explanation to guide generalization, it is unclear how this ability develops 
across the lifespan. Do young children coordinate explanations and generalizations from the moment they appreciate the distinctions 
between different kinds of explanations? Or does this ability emerge in a more gradual or piecemeal fashion, such that children only 
demonstrate such coordination at an older age? In the current paper, we investigate whether 4–5 and 6–7-year-old children are more 
likely to generalize a property on the basis of a shared feature (a causal mechanism, function, or category membership) after hearing an 
explanation citing a mechanistic, functional, or categorical relationship. This pattern would suggest a capacity to use explanations to 
inform subsequent generalizations. 

Examining how the coordination between explanation and generalization develops is important because it offers insights into one 
of the most basic questions in cognitive development: how children learn so much from limited input. Specifically, how do children 
constrain the range of hypotheses they entertain when generalizing from the known to the unknown? The explanations received from 
adults or peers could provide one crucial source of constraint, directing children to the generalizations that are most likely to be useful. 
Indeed, a large literature suggests that seeking, generating, and receiving explanations is a powerful basis for learning (Chi, de Leeuw, 
Chiu, & LaVancher, 1994; Lombrozo, 2012, 2016; Wellman, 2011). The link between explanations and inductive potential could be 
one reason explanation has such powerful effects. While explanation and generalization have both been the targets of much devel
opmental research, a direct test of how one informs the other in children is notably absent. 

Some indirect evidence of early explanatory sophistication suggests that the coordination between explanation and generalization 
could be in place by age four or five. Children as young as two years of age provide and seek explanations (Callanan & Oakes, 1992; 
Hickling & Wellman, 2001), and they begin to differentiate explanations from non-explanations by age three (Frazier, Gelman & 
Wellman, 2016). There is also evidence that explanation is coordinated with other representations and judgments from an early age (e. 
g., three- to four-year-olds invoke domain-appropriate mechanisms in their explanations, Hickling & Wellman, 2001; Inagaki & 
Hatano, 2006; see also Sobel, 2004). 

Prior work also suggests that young children differentiate between different types of explanations (mechanistic, functional, and 
categorical). By age four, children request explanations of different types in different domains (Greif, Kemler Nelson, Keil, & Gutierrez, 
2006), successfully generalize the form of an explanation (i.e., mechanistic versus functional) to novel cases (Lombrozo, Bonawitz, & 
Scalise, 2018), and appreciate when formal (categorical) explanations are appropriate (Haward, Wagner, Carey, & Prasada, 2018). 
There is also evidence that through grade school, children favor functional over mechanistic explanations (Kelemen, 1999; but see Keil, 
1996; Lombrozo et al., 2018). 

Finally, there is a great deal of evidence demonstrating that receiving and generating explanations can affect learning and inference 
(e.g., Wellman & Lagattuta, 2004; Walker, Lombrozo, Legare, & Gopnik, 2014; Walker, Lombrozo, Williams, Rafferty, & Gopnik, 2017; 
Ruggeri, Xu & Lombrozo, 2019). For example, Walker et al. (2014) found that prompting three- to five-year-old children to explain 
why objects made a machine go led them to privilege causal properties, as opposed to appearance, as a basis for generalizing internal 
properties and category membership. 

Despite this evidence of explanatory sophistication in the preschool years, a handful of findings suggest that explanation is 
somewhat quarantined from prediction, at least until age four. Specifically, several studies have found an “explanation advantage,” 
such that successful explanation precedes accurate prediction. For instance, children are able to explain why someone avoided a 
contaminated food before they can predict the same event (Amsterlaw & Wellman, 2006; Legare, Wellman, & Gelman, 2009). Wellman 
(2011) explains this progression in terms of the difference between postdiction and prediction: in the former case an additional piece of 
information (the outcome) is known. As a form of postdiction, explanation could involve a lower cognitive burden and serve as a 
stepping stone to prediction. 

By age eight, children are capable of generating sophisticated and context-appropriate explanations and predictions, but they do 
not yet show adult-like coordination between explanations and generalization. For example, one child in Vasil and Coley (in prep.) 
explained why a zebra and savannah grass are both sick with the same disease by appeal to causal transmission from grass to zebra: 
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Table 1 
Sample script from an incongruent trial (mechanistic explanation, function-based generalization). Arrows were not presented. A sample congruent 
trial is illustrated in the Online Supplement, Table S2.  
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“because it eats grass.” Yet when asked what else might be sick with the same disease, the child relied on a completely independent 
basis for generalization, saying “a werewolf, because both zebras and werewolves have a tail.” 

Summing up this research, there are good reasons to expect that even young children can effectively learn from explanations, 
suggesting some rudimentary level of coordination between explanation and subsequent generalizations. At the same time, the co
ordination of explanation and prediction is tenuous at age four (as reflected in the “explanation advantage” and other evidence of 
explanation-prediction asymmetries, Nancekivell & Friedman, 2017), and still fragile at age eight (Vasil & Coley, in prep.). In the 
present study, we thus focused on four- to seven-year-olds as an age range within which we might expect to see developmental change 
in the coordination of explanation and generalization. 

The goal of this study was to investigate when and how children begin to use explanations as a guide to subsequent generalizations. 
Children received and evaluated a mechanistic, functional, or categorical explanation for the property of a novel object, and then 
guessed whether that property generalizes to a hidden object, knowing only that it shares a mechanism, function, or category 
membership with the initial object. The main manipulation concerned the “congruence” between the presented explanation and the 
feature shared by the two objects. On congruent trials, the two objects shared the feature invoked in the explanation. For example, after 
hearing a mechanistic explanation (“It is sticky because it has a special tape on one side”), a participant was presented with a hidden 
object sharing the same mechanism invoked in the explanation (“it has a special tape on one side…do you think it is sticky?”). On 
incongruent trials, the explanation mentioned one feature (e.g., mechanistic), but the hidden object shared a different feature (e.g., 
functional, “it can pick up marbles”). This procedure involved an adaptation of classic category-based induction tasks, which have been 
used to study children’s and adults’ generalization for decades (Coley, 2012; Gelman & Coley, 1990; Gelman & Markman, 1986; Heit, 
2000; Heit & Rubinstein, 1994; Kalish & Gelman, 1992; Osherson, Smith, Wiklie, López, & Shafir, 1990; Rips, 1975; Ross & Murphy, 
1999; Sloman, 1994; see Hayes & Heit, 2013, for review). 

The first key question was whether generalization and explanation are coordinated by age four, and whether this coordination 
undergoes any change between ages four and seven. If children rely on explanations to guide their generalizations, they should 
generalize more confidently on explanation-congruent than on explanation-incongruent trials. If, in contrast, they generalize from 
known to unknown objects simply based on the fact that they share properties (tracking the truth status of shared relationships rather 
than their explanatory relevance), their generalizations should be insensitive to the preceding explanation (i.e. not vary across 
congruent vs. incongruent trials). The capacity to recognize variability in explanatory relevance across true statements increases 
between ages four and five (Johnston, Sheskin, & Keil, 2019), suggesting that we might see a shift towards increased reliance on 
explanation in generalization in our targeted age range. 

The second question was whether effective coordination depends on the type of explanatory relationship involved (i.e., mecha
nistic, functional, or categorical). Coordination might emerge earlier for the kinds of relationships that are most widely applicable 
(arguably mechanistic), for those that figure in favored kinds of explanations (arguably functional; Kelemen, 1999), or for those that 
dominate children’s early generalizations (arguably categorical; Coley, 2012). 

2. Method 

2.1. Participants 

We recruited 54 4- and 5-year-olds (range 48–71 months, M = 61 months, SD = 7 months) and 54 6- and 7-year-olds (range 72–95 
months, M = 82 months, SD = 8 months) in museums and preschools in the Bay Area, California. An additional eight children were 
excluded due to equipment failure (six children) or experimental error (two children). The study was approved by the University of 
California Berkeley Committee for Protection of Human Subjects. 

2.2. Materials, design and procedure 

The test session consisted of three trials, each comprising three phases: learning, explanation, and generalization (see Table 1 for a 
sample trial, and Online Supplement Tables S1 and S2 and Fig. S1 for additional materials). 

In the learning phase, the experimenter introduced a novel type of object (e.g., a “dax”) and presented three features forming a 
causal chain, in a fixed order (e.g., they have special tape on one side → are sticky → can pick up marbles). Objects and features were 
illustrated on colorful cards, laid out one by one as features were introduced. The causal chain was repeated once. 

In the explanation phase, the experimenter laid out a black-and-white silhouette of the same object type (e.g., a dax), and asked a 
why-question about the middle feature in the causal chain (e.g., “Why is it sticky?”), addressing a puppet on a laptop screen (who had 
been described as someone who says both smart and silly things). In a short video, the puppet provided an explanation. The expla
nations were either mechanistic (citing the preceding feature in the causal chain: “because it has special tape on one side”), functional 
(citing the final feature in the chain: “because that way it’s easy to pick up marbles”), or categorical (citing category membership: 
“because it’s a dax”). The child was then asked to evaluate the explanation using a two-step, four-point thumb scale ranging from 
“really bad” to “really good”: the child was first asked whether the explanation was good or bad, which was followed up with “is it 
really [good/bad], or is it kinda [good/bad]?” We adopted this two-step rating method in order to make it easier for young children to 
generate 4-point ratings, without overwhelming them with four choices at the outset. After the explanation evaluation, the experi
menter repeated the explanation and removed all the pictures. 

In the generalization phase, the experimenter presented a closed box with a transparent pocket holding a face-down card repre
senting an object feature. The experimenter said that another puppet wanted to know if the object in the box had a certain feature 
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(always the middle feature from the causal chain, e.g., being “sticky”); the experimenter said she did not know the answer, but they 
could check what the box said. The experimenter flipped the card, revealing a picture representing one of the features (mechanism, 
function, or category membership), and asked the child to make a guess about the hidden object (“Do you think it is sticky or not 
sticky?”). This was followed by “For sure [sticky/not sticky], or maybe [sticky/not sticky]?”, producing a 4-point rating. Then the box 
was removed, and the next trial began. 

The solicited generalizations were based on a shared mechanism, function, or category membership. Generalizations were either 
explanation-congruent (on one trial) or explanation-incongruent (on two trials; an equal number of congruent and incongruent trials 
could not be generated with three explanation types and three generalization types without recycling any across trials). On congruent 
trials, the generalization target and the original object shared the feature invoked in the preceding explanation. For instance, if a 
functional explanation was offered in the explanation phase, a congruent generalization trial would involve generalizing based on the 
shared function, and an incongruent generalization trial would involve generalizing based on the shared mechanism or category 
membership. 

The pairing between the three objects, three explanation types, and three generalization types was counterbalanced using a Latin 
square design, producing nine unique conditions. Across the three trials, each participant evaluated one explanation of each type, 
introduced by different puppets. Across participants, each explanation type was paired with each object and each generalization type. 

3. Results 

Due to experimental error or equipment failure, data from one explanation trial and four generalization trials were lost (two 
younger and two older children). For a given analysis, trials with missing data were excluded. Explanation and generalization ratings 
were treated as ordinal variables with four levels, and analyzed in ordinal logistic regressions using the “ordinal” package in R. 
Explanation type, generalization type and congruence were treated as categorical predictors; age (in months) was treated as a 
continuous predictor except when specified otherwise. The significance of higher-level effects was determined by model likelihood 
ratio tests. To assess lower-level effects (e.g. the effect of explanation type within each age group), we queried the full regression model 
varying the reference group for the categorical predictors. For pairwise comparisons we report the odds ratios (OR), i.e. exponentiated 
odds ratio coefficients from ordinal logistic regressions. These can be interpreted as the relative difference between the odds of 
transitioning to the next level of the ordinal outcome variable, comparing levels of the predictor variable. 

3.1. Explanation evaluation 

An ordinal logistic regression predicting explanation ratings from explanation type (mechanistic, functional, categorical) and 
centered age in months, allowing for random intercepts across participants, revealed that both explanation type (likelihood ratio 
LR = 39.96, df = 2, p < .001) and age (LR = 21.91, df = 1, p < .001) significantly predicted explanation ratings. Mechanistic expla
nations were rated higher than functional explanations, OR = 1.87, z = 2.09, p = .037, and higher than categorical explanations, 
OR = 6.01, z = 5.72, p < .001; functional explanations also received higher ratings than categorical explanations, OR = 3.22, 

Fig. 1. Distribution of explanation evaluation ratings as a function of explanation type and age group. Violin width is proportional to the number of 
participants giving the corresponding explanation rating. Gray dots show jittered raw data. Group means and standard errors (shown as black dots 
with error bars, ± 1SE) are displayed for reference only; the analyses treated evaluation ratings as an ordinal variable. Additional summary statistics 
are available in the online supplement, Table S3. 
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z = 4.08, p < .001. Overall, ratings decreased with age, OR = 0.95, z = − 4.54, p < .001. These effects were qualified by a marginally 
significant interaction, LR = 5.65, df = 2, p = .059. We explored the interaction further by switching to the categorical age predictor 
and examining the effect of explanation type in the younger (4–5-years-old) and older (6–7-years-old) age groups. As shown in Fig. 1, 
older children differentiated all three explanation types, rating mechanistic explanations higher than functional (OR = 2.27, z = 2.06, 
p = .040) and categorical (OR = 10.73, z = 5.66, p < .001), and rating functional explanations higher than categorical (OR = 4.73, 
z = 3.99, p < .001). Younger children showed a less pronounced pattern of differentiation: they rated mechanistic explanations higher 
than categorical (OR = 3.25, z = 2.77, p = .006), but their ratings of functional explanations were only marginally higher than those of 
categorical explanations (OR = 2.23, z = 1.93, p = .054), and their ratings of mechanistic and functional explanations did not differ 
(z = 0.85, p = .395). 

3.2. Property generalization 

Collapsing across offered explanation types, an ordinal logistic regression predicting generalization ratings from generalization 
type (cause-based, function-based, category-based) and centered age in months, allowing for random intercepts across participants, 
revealed no significant effects (all ps ≥ 0.123). This suggests that the stimuli were well-matched across types, providing an even 
playing field on top of which the preceding explanations might exert some effect. 

3.3. Relation between explanation and property generalization 

We first examined whether generalization ratings were reliably higher for congruent trials (where participants made property 
generalization decisions based on the relationship cited in the preceding explanation of that property) vs. incongruent trials (where the 
relationship did not match across explanation and generalization). We fit an ordinal logistic regression predicting generalization 
ratings from congruence (explanation-congruent vs. explanation-incongruent generalization), centered age in months, and their 
interaction, allowing for random intercepts across participants. The key finding from this analysis was that children rated explanation- 
congruent generalizations significantly higher than explanation-incongruent generalizations, LR = 4.89, df = 1, p = .027. In a set of 
additional analyses, we explored whether the effect of congruence held within each generalization type, or if, on the contrary, it was 
restricted to a subset of generalizations. In other words, we assessed whether all three explanations were effective in guiding congruent 
generalizations. Each generalization type (cause-, function-, or category-based) was predicted from explanation congruence, in three 
separate ordinal regressions. Cause-based generalizations showed a significant boost from congruent (mechanistic) explanations, 
relative to incongruent explanations, LR = 5.21, df = 1, p = .022; function-based generalizations received a marginal boost from 
congruent (functional) explanations, LR = 2.78, df = 1, p = .095; category-based generalization was not affected by presence or 
absence of congruent (categorical) explanations, LR = 0.04, df = 1, p = .851. Mean generalization ratings as a function of general
ization type and congruence are shown in Table 2. 

Turning to the developmental effects, age in months did not predict generalization ratings, LR = 2.40, df = 1, p = .121, and the 
interaction between congruence and age was not significant, LR = 0.86, df = 1, p = .355. However, in accordance with our analysis 
plan, we report the planned contrasts examining the degree of coordination between explanation and generalization separately in the 
younger children and in the older children. We found that the older children rated congruent generalizations significantly higher than 
incongruent generalizations, OR = 2.79, z = 2.58, p = .009; in contrast, the younger children did not, OR = 1.19, z = 0.45, p = .652 
(interaction between congruence and categorical age LR = 2.32, df = 1, p = .128). The response distributions shown in Fig. 2 suggest 
that the overall effect of congruence was driven primarily by a drop in explanation-incongruent generalization in older children. 
However, in the absence of a significant interaction, claims about developmental differences should be treated as highly tentative. 

3.4. Effects of explanation quality 

The preceding analyses indicate that whether an explanation is or is not congruent guides subsequent generalization (most likely by 
suppressing explanation-incongruent generalizations), and they suggest this effect might be driven by the older children in our sample. 
We next investigated whether this effect was moderated by children’s perceptions of an explanation’s quality, and whether we once 
again saw hints of a developmental trend, such that older children might show a more pronounced effect of explanation on subsequent 
generalization. Were this the case, we would expect older children to be more likely to generalize a property on the basis of some 
feature when they found an explanation that appealed to that specific feature good versus bad. 

For this analysis, we recoded children’s congruent explanation ratings as “high quality” if an explanation received a rating of 4, and 
as “low quality” otherwise. Thirty-six younger children (out of 54), and twenty-three older children (out of 54) rated congruent 

Table 2 
Generalization ratings as a function of generalization type, congruence, and age group. Means are followed in parentheses by standard deviations.    

Cause-based generalization Function-based generalization Category-based generalization 

Younger children (4–5 years) Congruent trials 3.67 (0.49) 3.67 (0.59) 3.56 (0.62) 
Incongruent trials 3.64 (0.59) 3.44 (0.82) 3.58 (0.69) 

Older children (6–7 years) Congruent trials 3.72 (0.46) 3.72 (0.57) 3.44 (0.70) 
Incongruent trials 3.15 (0.93) 3.22 (0.90) 3.53 (0.77)  
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explanations as “high quality.” This re-coding of explanation ratings served the purpose of making the effective range of the predictor 
variable more comparable across the older and younger children, as the latter group rarely used low explanation rating scale points. 
(We originally intended to perform a median split, but the median for both age groups was 4, so we used the next closest split between 
ratings of 3 and 4. Splitting the scale at 2/3 produced the same pattern of results, but with a preponderance of “high quality” ratings, 
46/54 younger and 40/54 older children.) 

We then examined how these ratings predicted generalization, on congruent trials only, separately for the two age groups. Older 
children were significantly more likely to generalize on congruent trials if they had rated the preceding explanation as “high quality” 
vs. “low quality” (LR = 4.31, df = 1, p = .038). In contrast, the younger group showed no relationship between their ratings of 
explanation quality and subsequent generalizations (LR = 0.42, df = 1, p = .516). 

4. Discussion 

This study investigated the emergence of coordination between explanation and generalization in 4–7-year-old children. We found 
that children were significantly more likely to generalize a property on the basis of some feature if they had previously heard an 
explanation tying the property to that feature, with the strongest evidence for this association emerging for older children receiving 
mechanistic explanations. For example, hearing that an object is sticky “because it has special tape on one side” vs. “because it is a dax” 
influenced how children generalized the property to an unknown object. The effect of explanation is particularly striking because it 
cannot be attributed to differences in factual beliefs: all participants received the same information about the objects; everyone learned 
what the object properties were, how they were connected via mechanistic and functional relationships, and what the object labels 
were. It also cannot be discounted as an artifact of the experimenter drawing attention to a particular type of relation, or attributed to a 
low-level strategy of providing higher ratings when a generalization “matched” what came before. On these accounts, we would expect 
congruence effects to have been equivalent across explanation types, or even most pronounced for categorical explanations, which 
offered the simplest and most distinctive content to “match.” Instead, we found variability across explanation types, with categorical 
explanations offering the weakest evidence for effects of congruence. 

Intriguingly, the effect of congruent explanation on subsequent generalization appeared to be driven by the older children in our 
sample, 6–7-years-olds. (Although the overall interaction did not reach significance, planned comparisons revealed significant dif
ferences; the trends are intriguing, but the evidence of developmental change should be interpreted with caution.) The effect of the 
explanation was greater for the children who judged it to be a good explanation, although again, this pattern only held for the older 
children. 

We also found a pronounced developmental shift in how strongly children differentiated among kinds of explanations. While 6–7- 
year-olds reliably favored mechanistic explanations over functional explanations, and functional explanations over categorical ex
planations, the preferences of 4–5-year-olds were less differentiated. Despite developmental differences in the strength of explanatory 
preferences, the relative ordering of mechanistic, functional and categorical explanations remained stable. While many studies do find 
a preference for functional explanations for artifacts, preferences also depend on the quality of the specific explanations (for a dis
cussion and data involving adults, Liquin & Lombrozo, 2018 is relevant). In the current case, we speculate that the functional ex
planations may have been less compelling because they were unfamiliar. By contrast, prior work using artifacts has overwhelmingly 
used familiar objects with known functions. 

Explanatory preferences were mirrored in the strength of the congruence effect across the three relationships: cause-based 

Fig. 2. Distribution of generalization ratings as a function of explanation-generalization congruence and age group. Each participant contributed 
three datapoints: one congruent generalization rating and two incongruent generalization ratings. Group means and standard errors (shown as black 
dots with error bars, ± 1SE) are displayed for reference; the analyzes treated generalization ratings as an ordinal variable. 
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generalizations were sensitive to the presence of congruent mechanistic explanations, but category-based generalizations were not; 
function-based generalizations showed an intermediate profile. Overall, these results reveal a coherent picture of increasing 
explanatory sophistication and emerging coordination between generalization and explanation, with explanations flagging relevant 
types of relationships between objects and their properties that support inferences to novel cases. 

Our findings prompt a variety of follow-up questions about etiology and on-line mechanisms. Speculating about possible devel
opmental trends, what might change between ages 4–5 and 6–7, such that greater coordination between explanation and general
ization might emerge alongside greater differentiation between different types of explanations? One possibility is that such 
developmental changes could be driven by children’s growing knowledge of the relevant relationships, and/or by increasing capacity 
to differentiate among explanatorily relevant vs. irrelevant true information (Johnston, Sheskin, & Keil, 2019) or historical vs. 
ahistorical functions (Lombrozo & Carey, 2006; Lombrozo & Rehder, 2012). However, it could also be that capacities for explanatory 
discrimination and flexible generalization bootstrap each other. It also remains an open question whether congruent explanations 
promote generalization, or incongruent explanations suppress generalization. 

Another open question concerns the role of pedagogy in our task. Rather than presenting children with an explanation from an 
authoritative source, children in our study were presented with an explanation from a puppet who “sometimes says things that are 
silly,” and they were then asked to evaluate the explanation themselves. It is plausible that presenting an expert explanation in a 
pedagogical context would have generated stronger effects on subsequent generalizations. It is also possible that such explanations 
would not only encourage some generalizations, but actively restrict others, much like pedagogical demonstrations can discourage 
children from more open-ended exploration (Bonawitz, Shafto, Gweon, Spelke, & Goodman, 2011). This could be the “dark side” of 
explanations’ positive inductive role: by encouraging learners to favor some inductive hypotheses over others, an explanation could 
restrict some forms of exploration or inference (see also Legare, 2012). 

Finally, our findings invite further investigation concerning the generalizability of the observed patterns beyond the domain of 
artifacts, as well as across cultural and educational contexts. Prior work has found variability in the strength of children’s preferences 
for teleological explanations across domains (e.g., Kelemen, 1999), raising the possibility that the coordination of explanation with 
generalization may vary across domains, as well. A broader question is whether, for a given observation in a given domain, people 
prefer to generalize based on the explanations they find most believable or appealing (be they categorical, mechanistic, or functional), 
or whether some types of explanation – mechanistic and/or functional – are generally privileged as more solid bases for generalization 
than categorical explanations, across domains. A cross-cutting set of questions concerns the origins of explanatory preferences, 
whether domain-general or specific: to what extent are they shaped by educational and cultural experiences, whereby teachers and 
other knowledgeable members of a community signal to the child what explanation types should be favored? These are important 
questions that a comprehensive account of how explanation and induction interact across development will need to address. 

In sum, our findings document an important source of guidance in children’s inductive generalizations: explanations of prior 
observations. Consistent trends in our data point to an important developmental transition: from generalization unconstrained by 
explanation, to generalization guided by it. As children master the coordination of explanation and generalization, they can increas
ingly benefit from the advantages enjoyed by adults, including the ability to effectively constrain a range of inductive hypotheses to the 
most relevant and plausible subset, and to generate flexible inferences from the same observation depending on one’s context and goals 
(Vasilyeva & Coley, 2013; Vasilyeva et al., 2017). The increasing capacity to discriminate among good and bad explanations (whether 
offered by others or internally generated) is an important scaffolding for children’s ability to make principled inductive guesses and 
navigate the world of uncertainty. 

At the same time, by focusing on inductively rich relationships that good explanations extract from the world, learners may miss out 
on some forms of broader exploration or inference that have been shown to facilitate the discovery of unconventional but true models 
of the world (Bonawitz et al., 2011; Gopnik, Griffiths, & Lucas, 2015; Legare, 2012) – but such is the cost of becoming an adult. 
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