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Abstract 

Research in education and cognitive development suggests 
that explaining plays a key role in learning and generalization: 
when learners provide explanations – even to themselves – they 
learn more effectively and generalize more readily to novel 
situations. This paper explores a potential mechanism 
underlying this effect, motivated by philosophical accounts of 
the structure of explanations: that explaining guides learners to 
interpret observations in terms of unifying patterns or 
regularities, which in turn promotes the discovery of broad 
generalizations. Experiment 1 finds that prompting participants 
to explain while learning artificial categories promotes the 
induction of a broad generalization underlying category 
membership. Experiment 2 suggests that explanation most 
readily prompts discovery in the presence of anomalies: 
observations inconsistent with current beliefs. Experiment 1 
additionally suggests that explaining might result in reduced 
memory for details. These findings provide evidence for the 
proposed mechanism and insight into the potential role of 
explanation in discovery and generalization. 
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Seeking explanations is a ubiquitous part of everyday life. 

Why is this bus always late? Why was my friend so upset 

yesterday? Why are some people so successful? Young 

children are notorious for their curiosity and dogged pursuit 

of explanations, with one “why?” question followed by 

another. Equally curious scientific researchers might 

wonder: Why is explaining so important?  

Psychologists and philosophers have independently 

proposed that in explaining observations about the past, we 

uncover underlying structure in the world, acquiring the 

knowledge to predict and control the future. For example, in 

explaining a friend’s behavior, you might come to 

appreciate the extent of her ambition, which informs 

expectations about her future actions.  

Research in education and cognitive development 

confirms that the process of explaining – even to oneself – 

can foster learning. This phenomenon is known as the self-

explanation effect, and has been documented in a broad 

range of domains: acquiring procedural knowledge about 

physics problems (Chi et al., 1989), declarative learning 

from biology texts (Chi et al., 1994), and conceptual change 

in children’s theory of mind (Amsterlaw & Wellman, 2006), 

to name only a few. Compared to alternative study strategies 

like thinking aloud, reading materials twice, or receiving 

feedback in the absence of explanations (e.g. Chi, 1994; 

Amsterlaw & Wellman, 2006), self-explanation consistently 

leads to greater learning, with the greatest benefit for 

transfer and generalization to problems and inferences that 

require going beyond the material originally studied.  

Researchers have made a number of proposals about the 

mechanisms that underlie explanation’s beneficial effects on 

learning. These include the metacognitive consequences of 

engaging in explanation (such as identifying comprehension 

failures), explanation’s constructive nature, and its role in 

dynamically repairing learners’ mental models of particular 

domains (e.g. Chi, 1989; 1994). Given the diversity of the 

processes which can underlie learning (Nokes & Ohlsson, 

2005), it is likely that explanation influences learning via 

multiple mechanisms.  

In this paper we explore why explaining plays such an 

important role in transfer and generalization. We investigate 

the hypothesis that engaging in explanation will promote the 

discovery of broad, abstract generalizations that underlie 

what is being learned. This hypothesis is motivated by work 

on the structure of explanations. By the structure of 

explanations, we mean the relationship that must hold 

between an explanation and what it explains for it to be 

genuinely explanatory. Little research in psychology has 

addressed this question directly (see Lombrozo, 2006), but a 

rich tradition from philosophy provides candidate theories.  

While there is no consensus, we focus on pattern 

subsumption theories, which identify good explanations as 

those that demonstrate how what is being explained is an 

instance of a general pattern (for discussion see Strevens, 

2008; for suggestive empirical evidence see Lombrozo & 

Carey, 2006; Wellman & Liu, 2006). A subset of these 

accounts further emphasizes unification: the value of 

explaining disparate observations by appeal to a single 

explanatory pattern. For example, in explaining a friend’s 

current cold by appeal to the contraction of a germ from 

another person, a specific event (Bob’s cold) is subsumed as 

an instance of a general pattern (the transmission of germs 

produces illnesses in people), and this general pattern can 

account for both this observation and a range of other data. 

Subsumption and unification accounts of explanation 

predict the privileged relationship between explanation and 

generalization demonstrated by the self-explanation effect. 

If the explanations people construct satisfy the structural 

demands of subsumption, then successfully engaging in 

explanation should result in the induction or explicit 

recognition of generalizations that underlie what is being 

explained. Generating or explicitly representing such 

generalizations should in turn facilitate the transfer of what 

is learned in one context to novel but relevant contexts. We 

therefore investigate the hypothesis that the structure of 

explanations contributes to the relationship between 

explanation and generalization, and that explaining will 

drive learners to discover broad, abstract generalizations 

that support effective transfer to novel contexts.  
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To test our hypothesis we employ a task from cognitive 

psychology: learning artificial categories from positive 

examples. Previous work on category learning suggests that 

categories are more coherent to the extent they support 

explanations (Patalano, Chin-Parker, & Ross, 2006), and 

that background beliefs that explain feature combinations 

facilitate category learning (Murphy & Allopenna, 1994) 

and influence judgments of a category member’s typicality 

(Ahn, 2002). This research demonstrates that “explanatory” 

background knowledge impacts category representations, 

but has not considered the self-explanation effect or the 

properties of explaining that may support learning. 

Examining generalization in the context of category 

learning has two benefits. First, learning about categories is 

a fundamental inductive generalization that children and 

adults regularly face, and one that has significant 

consequences for one’s ability to reason about and 

successfully navigate a complex world. If explaining 

influences category learning, there is good reason to expect 

explanation to play a role in other forms of learning. 

Second, as category members vary along many dimensions, 

there are multiple generalizations one might draw about the 

basis for category membership, so that category learning 

provides a natural setting in which to precisely investigate 

the nature of the generalizations prompted by explaining. 

 

Experiment 1 
In the experiment that follows, participants were 

introduced to artificial categories that supported two 

generalizations about category membership: the salient and 

reasonably predictive feature of body shape, and the subtle, 

abstract, but perfectly predictive feature of foot shape. Half 

the participants were prompted to explain while learning, 

the other half to describe. We chose description as a 

comparison because it mirrors explanations in time, 

attention, and verbalization, but does not impose the same 

structural constraints as explanation. If explaining drives 

participants to interpret observations in terms of general 

regularities, then participants prompted to explain should be 

more likely than those who describe to discover the subtle 

but perfectly predictive rule as a basis for categorization.  

 

Participants and Materials 
150 undergraduate students participated for course credit 

or monetary reimbursement. The task involved study items, 

test items, transfer items, and memory items.  

    Study items. Participants learned about two categories of 

robots from an alien planet, glorps and drents (study items 

are shown in Fig. 1). Each item was composed of four 

features: left color (blue, green, red, yellow), right color 

(brown, cyan, grey, pink), body shape (square or circular), 

and foot shape (eight different geometric shapes). Color was 

uncorrelated with category membership: every right and left 

color occurred exactly once per category. Body shape was 

correlated with category membership: three of four glorps 

(75%) had square bodies, and three of four drents had round 

bodies. Finally, each robot had a unique geometric shape for 

feet, but there was a subtle regularity across categories: all 

glorps (100%) had pointy feet while all drents had flat feet. 

                
Figure 1: Study items. 

 

        
Figure 2: Three types of test items. 

 

This category structure supported at least three distinct 

bases for categorization. First, participants could fail to 

draw any generalizations about category membership, and 

instead categorize new items on the basis of their similarity 

to individual study items, where similarity is measured by 

tallying the number of shared features across items.
1 

We call 

this ‘item similarity’. 

Alternatively, participants could detect the correlation 

between body shape and category membership (called the 

‘75% rule’, as it partitions study items with 75% accuracy). 

Finally, participants could discover the subtle, abstract 

regularity about pointy versus flat feet (called the ‘100% 

rule’, as it perfectly partitions study items).  

Test items. Three types of test item (shown in Fig. 2) were 

constructed by taking novel combinations of the features 

used for the study items. Each type yielded a unique 

categorization judgment (of glorp/drent) according to one 

basis for categorization (100% rule, 75% rule, item 

similarity), and so pitted one basis for categorization against 

the other two. We call these item similarity probes (2 items), 

75% rule probes (2 items), and 100% rule probes (4 items) 

Transfer Items. These items used completely novel foot 

shapes to distinguish participants who genuinely drew an 

abstract generalization concerning “pointy” versus “flat” 

feet from those who simply recognized the importance of 

particular foot shapes. For each item, the 100% rule was 

pitted against item similarity and the 75% rule. 

                                                             
1
 To confirm that our criterion for similarity (number of shared 

features) corresponded to that of naïve participants, 25 participants 

who were not in the main study were presented with each item 

from the categorization tests, and asked to indicate which study 

item was most similar. Across all items, the study items our 

criterion identified were the most frequently chosen. 
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 Memory Items. Twenty-three robots were presented in a 

memory test at the end of the experiment. Eight of these 

were the study items, four were selected from the previously 

presented test items, and 11 were totally new. 

 

Procedure 
The task involved several phases: introduction, study, 

testing, transfer, memory, and an explicit report. 

Introduction phase. Participants were instructed that they 

would be looking at two types of robots, glorps and drents, 

from the planet Zarn. They were given a color sheet that 

displayed the eight study items, in a random order but with 

category membership clearly indicated for each robot. 

Participants studied the sheet for 15 seconds, and kept it 

until the end of the study phase. 

Study phase. Each of the eight study items was presented 

onscreen with its category label. Participants in the explain 

condition received instructions to explain why the robot was 

of that type (e.g. “This robot is a GLORP. Explain why it 

might be of the GLORP type.”), and those in the describe 

condition received instructions to describe the robot of that 

type (e.g. “This robot is a GLORP. Describe this GLORP.”). 

All participants typed their responses into a displayed text 

box, with each robot onscreen for 50 seconds. Participants 

were not allowed to advance more quickly nor take extra 

time. After the study phase the experimenter removed the 

sheet showing the 8 robots. 

    Test and transfer phases. The eight test items were 

presented in random order, followed by the eight transfer 

items in random order, with participants categorizing each 

robot as a glorp or a drent. To discourage participants from 

skipping through items without paying attention, a response 

was only recorded after each robot had been displayed for 

two seconds. Participants were informed of this delay and 

the screen flickered after the two-second period ended.  

Memory phase. The eight study items (35%) and 15 lures 

(65%) were presented in a random order, and participants 

judged whether or not each robot was one of the original 

robots from the introduction and study phases. As in 

categorization, items had to be onscreen for two seconds. 

Explicit report. Participants were explicitly asked whether 

they thought there was a difference between glorps and 

drents, and if so, to state what they thought the difference 

was. Responses were typed onscreen. 

 

Results 

Bases for Categorization To understand how explaining 

influenced what participants learned about categories, we 

evaluated participants’ basis for categorizing novel robots. 

Explicit reports were coded into four categories (displayed 

in Table 1A): ‘100% rule’ (explicitly mentioning pointy 

versus flat feet), ‘75% rule’ (square versus circular body 

shape), ‘item similarity’ (reliance on nearest match from 

study), and ‘other’
2
. Responses were coded independently 

                                                             
2
 The “Other” category further consisted of blank, “no 

difference”, and unclear or uncodable responses. 

by two coders, with agreement of 86% and differences 

resolved by discussion.
3
 Table 1B reports the analogous 

categorization pattern coding categories: each basis for 

categorization predicts a particular pattern of responses 

across the test item probes, so participants were classified as 

using a basis for categorization if their responses were most 

consistent with that basis, with ties coded as ‘other’. 

    For both measures, Table 1 suggests that more 

participants learned and utilized the 100% rule in the 

explain than in the describe condition, while more 

participants drew on the 75% rule in the describe than the 

explain condition. For each measure, these suggestive 

patterns were evaluated statistically by tests for association 

between condition and a coding category: in each test the 

four rows were collapsed into two, the first being the target 

coding category and the second all other coding categories 

combined. For both the explicit response and categorization 

pattern measures, participants’ basis for categorization was 

more likely to be the 100% rule in the explain than the 

describe condition (!
2
(1) = 15.89, p < 0.001; !

2
(1)  = 17.65, 

p < 0.001), while the 75% rule was more prevalent in the 

describe than the explain condition (!
2
(1) = 19.56, p < 

0.001; !
2
(1)  = 9.54, p < 0.01). For both measures, ‘item 

similarity’ and ‘other’ responses were not significantly 

associated with condition.  

    While both groups of participants drew generalizations 

about the basis for category membership, these findings 

suggest that those in the explain condition were more likely 

to discover the subtle ‘100% rule’, which drew on an 

abstraction about foot shape to account in a unified way for 

the category membership of all study items. 

 

Table 1: Bases for categorization, by condition. 

 

Categorization of test and transfer items Participants’ 

categorization responses were scored as accurate if they 

corresponded to the ‘100% rule’. Figure 3 shows test and 

transfer accuracy as a function of condition. A 2 (task: 

explain vs. describe) x 2 (categorization measure: test vs. 

transfer) mixed ANOVA was conducted on categorization 

accuracy. This revealed a main effect of task (F(1,148) = 

16.10, p < 0.001) with participants in the explain condition 

                                                             
3
 Coding revealed that some participants reversed the two 

category labels. An example would be stating that glorps had flat 

feet or that drents had square bodies, when in fact the opposite was 

true. When a participant’s verbal response or post-experiment 

debriefing unambiguously indicated a switch in category labels, 

that participant’s categorization responses were reverse coded. 

 

A 
    Explicit response 

B   Categorization  

          pattern 

Basis  Exp. Desc. Exp. Desc. 

100% rule 26 6 36 12 

75% rule 14 40 17 35 

Item Sim. 0 0 4 7 

Other 35 29 18 21 
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categorizing test and transfer items significantly more 

accurately than those in the describe condition.
4
 There was 

also a significant effect of categorization measure (F(1,148) 

= 13.46, p < 0.001) as test accuracy was higher than 

transfer. It is worth noting that the more accurate 

categorization of transfer items by participants in the 

explain condition (t(148) = 2.91, p < 0.01) suggests that 

they not only recognized the importance of foot shape in 

determining category membership, but abstracted away 

from the specific shapes used on study items to recognize 

the subtle property of having ‘pointy’ or ‘flat’ feet.  

    Categorization performance was also analyzed separately 

for each of the three types of test item (displayed in Fig. 2). 

Participants categorization of the 100% rule probes was 

more consistent with the ‘100% rule’ in the explain than the 

describe condition (t(148) =4.41, p < 0.001), while 

categorization of the 75% rule probes was more consistent 

with the ‘75% rule’ in the describe than the explain 

condition (t(148) = 3.77, p < 0.001).  

Memory for study items Correct identification of original 

study items (hits) was similar across conditions (t(148) = 

0.06, p = 0.95). However, participants in the explain 

condition were less likely to correctly classify novel items 

as novel (correct rejections) than those in the describe 

(t(148) = 2.12, p < 0.05), suggesting that they were less 

attentive to the details of items during study (see Fig. 3). 

 

 
Figure 3: Categorization and Memory accuracy. 

 

Typed Explanations and Descriptions Each of the 8 

explanations (or descriptions) a participant provided was 

coded for whether a feature was mentioned (foot shape, 

body shape, and color), and if that feature was cited in an 

abstract or concrete way. References were coded as concrete 

if they cited the actual feature: e.g. triangle/square/L-shaped 

feet, square/round body, yellow/green color. References 

were coded as abstract if they characterized a feature in 

more general terms, which could be applied to multiple 

features: e.g. pointy/flat feet, big/strange body, 

warm/complementary colors. Figure 4 shows the number of 

features mentioned in each coding category, as a function of 

task. Two separate 2 (task: explain vs. describe) x 3 

(feature: feet vs. body vs. color) ANOVAs were conducted 

on the total number of concrete (abstract) features 

                                                             
4
 Accuracy near 50% does not reflect chance responding as 

items pit bases for categorization against each other. For example, 

for transfer items the two most common accuracy scores were 0% 

(perfectly systematic use of the 75% rule) and 100% (100% rule). 

mentioned by each participant. Participants in the explain 

condition cited a greater number of abstract features than 

those in the describe condition (a main effect of task, 

F(1,148) = 24.72, p < 0.001), while those in the describe 

condition cited more concrete features than those who 

explained (a main effect of task, F(1,148) = 164.65, p < 

0.001). Individual t-tests confirmed that these two findings 

were reliable for all features (all ps < 0.025) except abstract 

references to body shape (t(148) = 0.82, p = 0.41).  

    It is noteworthy that participants who explained were 

more likely to discover the 100% rule, even though those 

who described made references to feet more frequently. The 

coding data provide evidence against an attentional account 

of the effects of explaining on discovery, but are consistent 

with an attentional explanation for the enhanced memory 

found in the describe condition. 

          

 
Figure 4: Coding of feature references in participants’ 

explanations and descriptions. 

 

Experiment 2 
The first goal of Experiment 2 was to provide a stronger test 

of the hypothesis that explaining promotes discovery, 

building on the results of Experiment 1. Firstly, Experiment 

2 used a think aloud control condition instead of the 

describe condition. In Experiment 1, it is possible that the 

difference between performance in the explain and describe 

conditions resulted from a tendency of description to inhibit 

discovery. Thinking aloud places fewer restrictions than 

describing on how participants engage with the task, while 

controlling for having to verbalize. Secondly, participants 

were explicitly instructed in the introduction phase that they 

would be later tested on their ability to remember and 

categorize robots, and reminded of this before the study 

phase. This manipulation aimed to increase motivation and 

direct participants’ attention to processing items in a way 

that would be useful for the later tests, reducing the chances 

that engaging in explanation would have an additional effect 

on discovery as a result of task demands.                  

    Experiment 2 also aimed to test two hypotheses about the 

role of explaining in discovery. By virtue of the 

subsumptive properties of explanations or processing 

characteristics of explaining, explaining observations may 

always drive learners to discover underlying regularities that 

are present. Alternatively, in order to promote discovery, 

explanation may need to be directed at anomalous 

Concrete Abstract 
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observations that demonstrate the inadequacy of current 

beliefs (or current explanations). For example, these might 

serve to guide the search for better explanations which 

capture deeper underlying structure. To investigate this 

issue the study phase was modified so that learners provided 

explanations of category membership for only two robots: a 

glorp and drent that were both either consistent or 

inconsistent (anomalous) with the ‘75% rule’. The result 

was a 2 x 2 between-subjects design with task (explain vs. 

think aloud) crossed with item type (consistent vs. 

anomalous). The materials were the same as in Experiment 

1, with minor changes to study items and a new set of 

memory items.  

 

Procedure Except for the following changes, the procedure 

was the same as in Experiment 1. (1) The initial instructions 

explicitly informed participants: “You will later be tested on 

your ability to remember the robots you have seen and 

tested on your ability to decide whether robots are GLORPS 

or DRENTS.” Participants were reminded of this before 

explaining (thinking aloud) in the study phase. (2) After 

participants received and viewed the sheet of robots, the 

introduction phase was augmented by presenting individual 

study items for study. A block consisted of displaying each 

of the 8 study items for four seconds with its category label, 

in a random order. Three blocks were presented, with a clear 

transition between blocks.  

While participants provided explanations (descriptions) 

for all 8 robots in Experiment 1, the Experiment 2 study 

phase only presented two robots (one glorp and one drent) 

each for 90 seconds, with a warning when 30 seconds were 

left. In the consistent condition the two robots were 

randomly selected from the 6 consistent with the ‘75% rule’, 

while in the anomalous condition the two robots were those 

inconsistent with the ‘75% rule’.  

Instructions to explain and think aloud were provided 

before the robots were displayed, and so the prompt 

accompanying each robot was omitted. Participants’ 

verbalizations were recorded using a voice recorder. The 

explain instructions were identical to Experiment 1, while 

the think aloud instructions were: “You should say aloud 

any thoughts you have while you are looking at the robots 

on the screen or on the paper. Say aloud whatever you are 

thinking or saying in your head, whether you are having 

thoughts about the robots, memorizing what they look like, 

or anything at all- even if it seems unimportant.”  

The test, transfer, and memory phases were identical to 

Experiment 1.  

Results The results reported are for 160 participants (40 

per condition), although data collection is ongoing. As the 

data on explicit responses and categorization patterns 

generally mirrored that for categorization accuracy, we only 

present results for categorization. In the interests of space 

we do not discuss the memory data. 

    A 2 (task: explain vs. describe) x 2 (item type: consistent 

vs. anomalous) x 2 (categorization measure: test vs. 

transfer) mixed ANOVA was conducted on categorization 

accuracy. Fig. 5 shows test and transfer categorization 

accuracy. There was a significant main effect of task 

(F(1,156) = 8.33, p < 0.005) with higher accuracy in the 

explain than think aloud condition, while the effect of item 

type was marginal (F(1,156) = 2.45, p = 0.12) and the 

interaction between task and item type was also marginal 

(F(1,156) = 2.54, p = 0.11). There was a significant effect of 

categorization measure (F(1,156) = 14.38, p < 0.001) with 

test accuracy higher than transfer, and a significant 

interaction between categorization measure and item type 

(F(1,156) = 6.33, p < 0.05), with transfer accuracy being 

particularly high in the anomalous condition. A contrast of 

the explain-anomalous against the explain-consistent 

condition revealed a significant difference (F(1,156) = 4.99, 

p < 0.05): explaining anomalous category members 

promoted accurate generalization significantly more than 

explaining consistent members.  

Figure 5: Categorization accuracy (Exp. 2). 

 

Discussion 
These findings support our hypothesis that engaging in 

explanation can facilitate the discovery of regularities 

underlying category membership. Participants prompted to 

explain why items belong to particular categories were more 

likely to induce the abstract generalization (‘100% rule’) 

governing category membership than were participants 

instructed to describe category members (Exp. 1) or to think 

aloud during study (Exp. 2). Experiment 2 further suggests 

that anomalous data mediates the relationship between 

explanation and discovery: neither explaining typical 

category membership nor studying anomalous members was 

as effective as the conjunction of these conditions - 

explaining the membership of anomalous items.  

Our findings support an account of explanation that 

emphasizes subsumption and unification. If good 

explanations are those that show how what is being 

explained is an instance of a general pattern or regularity, 

then explaining category membership should drive 

participants to discover regularities or patterns. And if 

explanations are better to the extent they unify a greater 

number of observations, explaining should drive 

participants to induce abstract generalizations that are 

broader and surpass the 75% accuracy afforded by using 

body shape. 

While explaining promoted the discovery of category 

structure, there was suggestive evidence that participants 

who explained fared more poorly than those who described 

on a memory test for studied items. Two possible reasons 

Test Transfer 
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for this could be that less attention is available for encoding 

item details when people are actively trying to generate 

explanations  and/or that highlighting features relevant for 

category membership (such as foot or body shape) indicates 

which other features can be safely ignored. 

An alternative interpretation of Experiment 1 is that 

describing inhibits discovery, not that explaining facilitates 

it. However, the think aloud control condition of 

Experiment 2 did not require participants to focus on or 

report item features, yet discovery of the generalization was 

still higher when participants explained. Another possibility 

is that prompting participants to explain merely altered the 

implicit demands of the task. However, in Experiment 2, 

participants in both conditions were explicitly instructed that 

they would have to categorize and remember items, and 

reminded of this goal before the study phase. Taken 

together, the findings from Experiment 1 and 2 suggest that 

explaining played a significant role in facilitating learning 

by promoting discovery of an underlying regularity. 

This research has potential implications for both cognitive 

psychology and education. Our findings suggest that 

explaining will be most beneficial when learning material or 

interpreting observations that contain systematic regularities 

or reflect broad underlying principles. Explaining may be 

less helpful – or even harmful – in less systematic domains, 

or when learners’ prior knowledge is insufficient to support 

the induction of relevant principles. An interesting question 

for future research is whether learners spontaneously 

explain precisely when it’s most likely to be beneficial. Our 

finding that explaining anomalous information benefits 

learning more than explaining consistent information (Exp 

2) is consistent with this speculation. 

The importance of the confluence of explanatory efforts 

and anomalous observations is also interesting. An 

important component of effective instruction may be 

incorporating or making salient those facts and observations 

that expose the insufficiency of a learner’s current 

knowledge and beliefs, or demonstrate the unsatisfactory 

nature of current explanations, so that engaging in 

explanation can drive the induction of generalizations that 

subsume anomalies. A similar set of considerations may 

apply in facilitating discovery, construed more broadly. 

The memory findings from Experiment 1 suggest that it is 

not necessarily always productive to engage in explanation: 

this learning strategy has particular advantages and 

disadvantages. In many learning contexts encoding facts and 

details is essential, and may even be necessary to support 

future learning. Explanation and activities like description 

may therefore be complementary learning strategies. 

Beyond human learning, research on the relationship 

between explanation, learning and generalization may also 

inform machine learning, where algorithms involving 

explanation have been proposed (e.g. Lewis, 1988).   

Our experiment is the first (that we know of) to use tools 

from the cognitive psychology of categorization to examine 

the effects of explaining on learning, a topic most 

commonly pursued in educational and developmental 

psychology. We believe that the integration of these 

traditions has a great deal of promise. By using artificial 

categories, we were able to exert more precise control over 

participants’ prior beliefs. And by generating category 

structures that supported multiple generalizations, we were 

able to provide a more precise characterization of the role of 

explanation in the discovery of generalizations. We hope 

that this experiment contributes to further explorations at the 

intersection of educational and cognitive psychology. 
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