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Abstract 

A great deal of research has demonstrated that learning is 
influenced by the learner’s prior background knowledge (e.g. 
Murphy, 2002; Keil, 1990), but little is known about the processes 
by which prior knowledge is deployed. We explore the role of 
explanation in deploying prior knowledge by examining the joint 
effects of eliciting explanations and providing prior knowledge in a 
task where each should aid learning. Three hypotheses are 
considered: that explanation and prior knowledge have 
independent and additive effects on learning, that their joint effects 
on learning are subadditive, and that their effects are superadditive. 
A category learning experiment finds evidence for a superadditive 
effect: explaining drives the discovery of regularities, while prior 
knowledge constrains which regularities learners discover. This is 
consistent with an account of explanation’s effects on learning 
proposed in Williams & Lombrozo (in press). 
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What processes underlie the critical capacity to acquire 

information and generalize to future situations? The topic of 
learning is one with a long history in cognitive science and 
development, and with important practical applications to 
education. While much research in cognitive science has 
focused on mechanisms that are independent of the specific 
knowledge people possess about a domain, studies have 
repeatedly and reliably demonstrated that prior background 
knowledge has profound effects on learning. This work 
suggests that characterizing how prior knowledge influences 
learning is a key issue for theories of learning. 

Effects of prior knowledge have been particularly well 
characterized in the context of category learning. Prior 
knowledge that relates the features of a category allows 
learners to discover an underlying thematic pattern and learn 
the category more quickly (e.g., Murphy & Allopenna, 
1994), and prior knowledge can also influence the 
construction of features in a way that supports classification 
(Wisniewski & Medin, 1994). Most broadly, prior 
knowledge has been seen as helpful because it exerts 
constraints on the process of knowledge acquisition (Keil, 
1990), such as reducing the set of hypotheses learners 
entertain (Tenenbaum, Griffiths & Kemp, 2006). Most 
proposed mechanisms for category learning – such as 
encoding of exemplars, prototype formation, and other 
associative learning mechanisms – do not capture effects of 
prior knowledge (see Murphy, 2002), although more recent 
computational models attempt to incorporate such effects 
(e.g., Rehder & Murphy, 2003; Tenenbaum et al, 2006). 

One possibility is that generating explanations plays a 
role in the effects of prior knowledge on learning. In this 
paper we consider the relationship between eliciting 

explanations and effects of prior knowledge. Engaging in 
explanation during study has been shown to promote 
learning and generalization in a range of knowledge-rich 
domains, for both adults (e.g. Chi, et al, 1994) and young 
children (for a review see Wellman & Liu, 2006). The 
process of “self-explaining” may be effective in part 
because explaining integrates new information with prior 
knowledge (Chi et al, 1994). 

Previous work on eliciting explanations has considered 
the role of prior knowledge in mediating learning gains, but 
with mixed results. Some studies find that eliciting 
explanations has the greatest benefit for learners with low 
levels of prior domain-knowledge (e.g., Renkl et al., 1998), 
and that self-explanation training may be more useful for 
learners with low domain knowledge (McNamara, 2004). 
Other studies have not found a relationship between pre-test 
performance and the magnitude of post-test gains (e.g. Chi 
& VanLehn, 1991; Chi et al., 1994; Rittle-Johnson, 2006), 
although there is suggestive evidence that learners with 
more background produce higher-quality self-explanations 
(Renkl, 1997; Best, Ozuru, & McNamara, 2004).  

Williams and Lombrozo (in press) propose a subsumptive 
constraints account of the role of explanation in learning 
that suggests how explanation and prior knowledge might 
interact to guide learning. The subsumptive constraints 
account is inspired by theories of explanation in philosophy 
which propose that explanations show how what is being 
explained is an instance of (subsumed by) a general pattern. 
If the explanations learners generate must satisfy this 
constraint, then attempting to explain should drive learners 
to discover regularities and underlying principles that are 
present in the material being explained. In support of this 
proposal, Williams and Lombrozo (in press) found that 
participants who explained items’ category membership 
were more likely to discover a subtle regularity underlying 
category membership than participants who described 
category items, thought aloud, or engaged in free study. 

The subsumptive constraints account suggests two ways 
in which explanation and prior knowledge could interact. 
First, explanations could determine which prior knowledge 
is deployed. According to the subsumptive constraints 
account, learners should invoke beliefs that demonstrate 
how what is being explained can be subsumed under general 
patterns. Second, the account suggests that prior knowledge 
could provide a source of constraint on which subsuming 
generalizations are considered explanatory. Consider the 
task of learning about the categories “psychology lecturer” 
and “psychology student” from the limited observation of a 
single lecture. The underlying bases for the categories could 
be that a psychology student is seated while a psychology 



lecturer is standing, but this generalization seems like an 
implausible basis – and a poor explanation – for category 
membership. Distinguishing law-like generalizations from 
accidental generalizations is notoriously difficult (for 
discussion in philosophy see Caroll, 2008; and in 
psychology, Kalish, 2002), but prior knowledge may 
provide one source of constraint on which patterns are seen 
as explanatory, therefore determining which patterns 
participants are more likely to discover and employ in 
seeking explanations.  

To investigate the relationship between explanation and 
prior knowledge, we restrict our focus to cases where 
explanation and prior knowledge would be expected to help 
learning, and consider whether their joint effects on learning 
are independent and additive, subadditive (less than the sum 
of their independent effects), or superadditive (greater than 
the sum of their independent effects).1  

The proposed experiment uses a category-learning task in 
which there are patterns underlying category membership, 
and an explanation manipulation (explain vs. free study) is 
crossed with a prior knowledge manipulation (knowledge 
relevant to an underlying pattern is provided vs. no 
additional knowledge). The experiment aims to discriminate 
three alternative hypotheses about the joint effects of 
explanation and prior knowledge on learning. 

One possibility is that explanation and prior knowledge 
have independent and additive effects. This hypothesis is a 
sensible default in the absence of evidence that eliciting 
explanations and prior knowledge interact, and no specific 
accounts have been proposed as to how prior knowledge 
might be deployed through explaining. Independent effects 
of explanations and prior knowledge would be likely if 
explaining helps learning through mechanisms that do not 
interact with those by which prior knowledge plays a role. 
For example, explaining might increase attention and 
motivation, while prior knowledge might independently 
constrain the hypotheses under consideration. 

A second possibility is that prior knowledge and 
explanation have subadditive benefits. This could occur if 
the effects of explanation and prior knowledge are achieved 
through common mechanisms. For example, prompts to 
explain and the provision of prior knowledge may both 
guide learners to seek meaningful regularities in category 
structure. Explaining when prior knowledge is already 
available may therefore have little benefit above simply 
possessing prior knowledge. 

                                                             
1 Whether explanation and prior knowledge help or hurt learning 

depends on the nature of what is being learned. Prior beliefs about 
a domain may be incorrect, or explaining may drive learners to 
unreliable patterns (Williams & Lombrozo, in press; Williams, 
Lombrozo, & Rehder, in press). In this paper we do not aim to 
investigate interactions of explanation and prior knowledge in 
settings where either will individually impair learning. In many 
real-world cases and educational contexts, both explaining and 
prior knowledge would be expected to benefit learning – for 
example, if there are regularities to discover and prior knowledge 
is correct – and this is the kind of setting we explore. 

 

A final possibility is a superadditive effect of explanation 
and prior knowledge, such that explanation and prior 
knowledge interact in a way that produces a learning benefit 
that exceeds either of their independent effects. This could 
occur if explanations deploy prior knowledge that might 
otherwise be inert, or if prior knowledge influences the 
generation of explanations in a way that fosters more 
effective learning. The subsumptive constraints account 
suggests one way this might work: attempting to generate 
explanations (e.g. for category membership) could invoke 
prior beliefs in order to supply candidate subsuming 
patterns, and prior beliefs could simultaneously constrain 
which candidate subsuming regularities are deemed 
explanatory.  

  
Experiment 

 
There are many ways that prior knowledge could impact 

learning, and accordingly a multitude of ways in which prior 
knowledge could be manipulated. In this experiment, we 
provide category labels intended to activate prior knowledge 
relevant to which features might underlie membership.  

We used eight category items, shown in Figure 1. There 
were two rules that could be used to categorize: an antenna 
rule (shorter left vs shorter right antenna) and a foot rule 
(pointy vs flat feet). The prior knowledge variable was 
operationalized by providing uninformative category labels 
that were neutral with respect to the two rules (low prior 
knowledge condition: items labeled as Glorp and Drent 
robots) versus labels that could be related to the foot rule 
(high prior knowledge condition: labeled as Outdoor and 
Indoor robots). The motivation for these rules was that 
participants’ knowledge might account for Outdoor robots 
having pointy fleet and Indoor robots having flat feet, but 
not for why Outdoor or Indoor robots would have shorter 
left or right antennae.2 

While all participants were informed that they would later 
be tested on their ability to categorize robots, those in the 
explain condition were prompted to explain the category 
membership of the Glorp and Drent (or Indoor & Outdoor) 
robots, while those in the free study condition were allowed 
to study the robots without specific prompts, yielding a task 
variable with two levels (explain vs. free study). 

The two (Task: Explanation vs. Free Study) x two (Prior 
knowledge: Low vs. High) design therefore allowed for a 
test of whether the joint effect of explanation and prior 
knowledge on learning a basis for categorization is 
independent and additive, subadditive, or superadditive. 

 
 
 
                                                             
2 Participants could have drawn on prior knowledge to explain 

why antenna length was related to being Outdoor/Indoor, or have 
had beliefs that conflicted with, for example, Outdoor robots 
having pointy feet, but the significant difference between 
conditions suggests this was not true for the majority of 
participants.  



Participants  
Two hundred and forty (60 in each condition) UC 

Berkeley students participated for course credit or monetary 
reimbursement (161 in the lab, 79 online).  
 
Materials 
The task involved study items, test items, and transfer items.  

Study items. There were two categories of alien robots; 
the image participants saw in the high prior knowledge 
condition is displayed in Figure 1. The category labels were 
chosen based on whether the condition was low or high 
prior knowledge: the robots were labeled as Glorps and 
Drents in the low prior knowledge condition, and as Indoor 
and Outdoor robots in the high prior knowledge condition.  

Each robot was composed of six elements: left color 
(blue, green, red, yellow), right color (brown, cyan, grey, 
pink), body shape (square, circular), left antenna length 
(short, long), right antenna length (short, long), and foot 
shape (eight different geometric shapes). Color and body 
shape were uncorrelated with category membership: every 
right and left color occurred exactly once per category, and 
each category had two robots with square bodies and two 
with circular bodies. All four Outdoor (Glorp) robots had a 
shorter left antenna and all four Indoor (Drent) robots had a 
shorter right antenna. Although each robot had a unique 
geometric shape for feet, there was a subtle regularity across 
categories: all four Outdoor (Glorp) robots had pointy feet 
while all four Indoor (Drent) robots had flat feet. For 
simplicity, from this point on we refer to the robots in each 
category by their high prior knowledge label 
(Outdoor/Indoor robots).  

 
Figure 1: Study items. 

 
This category structure supported at least three distinct 

bases for categorization. First, participants might not draw 
any generalizations about category membership, and instead 
categorize new items on the basis of their similarity to 
individual study items, where similarity is measured by 
tallying the number of shared features across items. We call 
this item similarity. Alternatively, participants could notice 
the antenna feature (Outdoor robots had shorter left 
antennas, Indoor robots shorter right antennas) and use it as 
a categorization rule: this is termed the antenna rule. 
Finally, participants could discover that although each robot 
had a unique geometric shape for feet, there was a subtle 

regularity termed the foot rule: Outdoor robots had pointy 
feet and Indoor robots had flat feet.  

Test probe items. Three types of test item were 
constructed by taking novel combinations of the features 
used for the study items. Each type yielded a categorization 
judgment (of Outdoor/Indoor) that was diagnostic of one 
basis for categorization (item similarity, antenna rule, foot 
rule), by pitting that basis for categorization against the 
other two. For example, categorizing a yellow/gray robot 
with a shorter right antenna and pointy feet as an Indoor 
robot would suggest a participant relied on the antenna rule. 
We call these item similarity probes (three items), antenna 
rule probes (three items), and foot rule probes (four items). 
There was one extra item for which all three bases gave the 
same response. 

Transfer Items. These four items used completely novel 
foot shapes to distinguish participants who genuinely drew 
an abstract generalization concerning “pointy” versus “flat” 
feet from those who simply recognized the importance of 
particular foot shapes. For each item, the foot rule was 
pitted against item similarity and the antenna rule. 
 
Procedure 

The task involved a study phase, a categorization phase, 
and additional measures designed to probe what participants 
had learned about the categories.  

Study phase. Participants were instructed that they would 
be looking at two types of robots on the planet Zarn: 
Outdoor (Glorp) and Indoor (Drent) robots, with labels 
chosen based on being in the high or low prior knowledge 
condition. They were also informed that they would later be 
tested on their ability to remember the robots they had seen, 
and their ability to decide whether robots were Outdoor 
(Glorp) or Indoor (Drent) robots. 

After advancing the instruction screen they saw a color 
image displaying the eight study items in a scrambled order, 
with each robot numbered 1 through 8 and category 
membership clearly indicated for each robot (the actual 
image for the high prior knowledge condition is shown in 
Figure 1). In both conditions participants were informed that 
they were seeing eight robots on ZARN and that the picture 
would be onscreen for two minutes. Participants in the 
explain condition were told “Explain why robots 1, 2, 3 & 4 
might be Outdoor (Glorp) robots, and explain why robots 5, 
6, 7 & 8 might be Indoor (Drent) robots.”3 Participants 
typed their explanations into a box onscreen. Those in the 
free study condition were told “Robots 1, 2, 3 & 4 are 
Outdoor robots, and robots 5, 6, 7 & 8 are Indoor robots.” 
The image was onscreen for exactly two minutes and then 
the screen automatically advanced.  

Categorization phase. The eleven test items were 
presented in random order, followed by the four transfer 
items in random order, with participants categorizing each 
robot as Outdoor (Glorp) or Indoor (Drent).  

                                                             
3 In all quoted prompts, the alternative labels (Glorp/Drent 

instead of Outdoor/Indoor) are displayed in parentheses, but only 
one set of labels was actually displayed. 



Probability of pattern. To assess participants’ belief about 
the presence of a defining feature or rule, they were asked: 
“What do you think the chances are that there is one single 
feature that underlies whether a robot is Outdoor (Glorp) or 
Indoor (Drent) - a single feature that could be used to 
classify ALL robots?” 

Category differences. Participants were explicitly asked 
“Were there any noticeable differences between Outdoor 
(Glorp) and Indoor (Drent) robots? If you think there were, 
please be SPECIFIC about what you thought the differences 
were.”  

Ranking of question informativeness.4 
Features used for categorization. Participants were asked 

which features they used in categorizing robots. There was a 
separate line to enter features of Outdoor (Glorp) robots and 
features of Indoor (Drent) robots. 5 

Antenna Informativeness. Participants were asked if they 
could tell whether a robot was Outdoor (Glorp) or Indoor 
(Drent) by looking at its antenna, and if they could, to state 
what the difference was. 

Antenna classification.4 
Explanation self-report. All participants were asked if 

they were trying to explain the category membership of 
robots while the image of all 8 robots was onscreen. 

Previous exposure. Participants were asked if they had 
seen the robots before, or already done an experiment using 
the materials.6 

Foot informativeness. Participants were asked if they 
could tell what category a robot belonged to by looking at 
its feet, and if they could, to state what the difference was. 

 
Results 
In the interests of space, we do not report all dependent 
measures, especially as many support the same conclusions. 

Each of the three kinds of test probe items pitted one basis 
for categorization against the other two, so participants’ 
patterns of categorization over the full set was used to 
determine whether their basis for categorization was most 
consistent with ‘item similarity’, the ‘antenna rule’, or the 
‘foot rule’, with ties coded as ‘other’. The proportion of 
participants using each basis is shown in Table 1, as a 
function of condition. In addition to examining the basis 
participants’ used, direct measures of antenna rule 
discovery and foot rule discovery were also coded from 
participants’ responses to questions about whether they 
could classify robots based only on antenna or feet. These 
generally mirrored the findings on rule use. Figure 2 shows 
the proportion of participants who discovered the foot and 

                                                             
4 This question asked participants to rank how informative 

different questions would be about membership, but is redundant 
with other reported measures and so omitted to save space. 

5 Some participants’ categorization responses were reverse 
coded, if their explicit reports about the differences between 
categories or features used to categorize revealed they had reversed 
category labels, such as stating that outdoor robots had flat feet 
when in fact the opposite was true. 

6 Those who indicated previous participation were excluded. 

antenna rules and Figure 3 shows the proportion that 
discovered a rule (antenna or foot), as a function of 
condition. 

A log-linear analysis on task (explain vs. free study), 
prior knowledge (low vs. high), and foot rule use (used vs. 
did not use foot rule, as computed from inferred basis) 
revealed a significant three-way interaction, χ2 (1) = 7.27, p 
< 0.01, while that for foot rule discovery was marginal, χ2 
(1) = 3.16, p = 0.08. Explanation and prior knowledge had a 
joint, superadditive effect on use of the foot rule. This 
interaction was driven by privileged use of the foot rule by 
participants who explained and had high prior knowledge 
(the explain-high PK condition): the combination of 
explaining and relevant prior knowledge exceeded the 
effects of each factor on its own. In fact, in the absence of 
explaining (i.e., the free study conditions) prior knowledge 
did not have an effect on foot rule use, χ2 (1) = 0.06, p = 
0.81.  

 

 
Foot 
Rule 

Antenna 
Rule 

Item 
Similarity Other 

Explain- Low PK 0.32 0.60 0.05 0.03 
Explain- High PK 0.67 0.25 0.06 0.02 
Free Study- Low PK 0.35 0.22 0.38 0.05 
Free Study- High PK 0.35 0.20 0.40 0.05 
 
Table 1: Proportion of participants using each basis for 
categorization, by condition. 

 
Figure 2: Proportion of participants who discovered the foot 
and antenna rules, by condition. 

 
Figure 3: Proportion of participants who discovered a rule 
(antenna or foot), by condition. 
 

There was also a three-way interaction between task, prior 
knowledge and both antenna rule use, χ2 (1) = 5.48, p < 
0.05, and antenna rule discovery, χ2 (1) = 5.40, p < 0.05, 
driven by the explain-low PK condition. Overall, use of a 
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rule (either antenna or foot) was higher for explainers 
(interaction between task and whether a rule was used, χ2 
(1) = 42.76, p < 0.001, while reliance on item similarity was 
higher in the free study condition (interaction of task and 
item similarity use, χ2 (1) = 41.90, p < 0.001). Interestingly, 
overall rule discovery was actually higher in the explain-low 
PK than explain-high PK condition, χ2 (1) = 4.09, p < 0.05. 
 

Discussion 
 
In the context of category learning, we found that 

explanation and prior knowledge interacted, producing an 
effect on the discovery of a regularity related to prior 
knowledge that surpassed the independent effects of 
explanation or prior knowledge alone. This finding 
challenges the possibility that explaining and prior 
knowledge influence learning independently. Since a 
subadditive effect was not found, it also provides evidence 
against the hypothesis that explanation and prior knowledge 
draw on the same mechanisms or resources in promoting 
learning. The best explanation for the current findings is that 
explanation and prior knowledge influence learning by 
neither independent nor identical means, but have an 
interactive relationship. 

This relationship can be understood in terms of the 
subsumptive constraints account of explanation and learning 
(Williams & Lombrozo, in press). If explaining exerts the 
constraint that learners generate explanations that show how 
what is being explained is subsumed by a general pattern, 
prior knowledge can provide constraints on which patterns 
support reasonable explanations. In the current experiment, 
explaining why items were Outdoor and Indoor robots drew 
on prior knowledge that constrained learners to explain 
membership in terms of the foot rule rather than a rule 
concerning antenna length. Not all subsuming patterns are 
equally explanatory; patterns must also make sense in light 
of prior knowledge.  

An alternative account could instead implicate attentional 
mechanisms: Explaining promotes attention to items while 
prior knowledge exerts constraints on which item features 
are the focus of this attention, leading to an interactive effect 
on discovery of the foot rule. However, prior knowledge did 
not focus attention on the foot rule in the free study 
conditions. Moreover, Williams et al (in press) provide 
evidence that explaining can actually impair learning, 
suggesting that its effects go beyond increasing attention to 
exerting subsumptive constraints. If explaining influences 
attention, the evidence suggests it is not a generalized 
attentional boost to encode item details or monitor more 
information, but through constraints to attend to underlying 
patterns, which we would endorse as consistent with the 
subsumptive constraints account. 

While we report a superadditive effect of explanation and 
prior knowledge, there are likely contexts in which different 
kinds of interactions would obtain. For example, it is known 
that the learning benefits of explanations (Williams et al, in 
press) and of prior knowledge (Wattenmaker et al, 1986) 

depend on the relationship between the constraints imposed 
by explanation or prior knowledge and the structure of the 
material being learned. If explanation exerts inappropriate 
constraints or prior knowledge is incorrect, their joint effects 
will be markedly different. Also, in cases where explanation 
automatically recruits prior knowledge or prior knowledge 
produces spontaneous explanation, their joint effect may 
appear to be independent or subadditive. The goal in the 
current work was to take a first and necessarily 
circumscribed step towards the ambitious goal of 
understanding the interactions between explanation and 
prior knowledge in learning.  

Despite these limitations, the findings have implications 
for education and suggest interesting directions for applied 
research. Providing evidence that explaining invokes and is 
influenced by prior knowledge helps to explain why it has 
such powerful effects on learning. Explaining drives the 
discovery of regularities and guides learners to interpret 
what they are learning in terms of what they already know: 
an activity students may not engage in spontaneously even 
if they possess relevant prior knowledge.  

If explaining promotes consistency with prior knowledge, 
its benefits may depend on having acquired correct and 
useful prior knowledge. Learning strategies that focus on 
acquiring background knowledge may be a necessary 
precursor to activities that involve explanation, and failures 
of explanation may suggest the need to develop background 
knowledge. The dangers inherent in incorrect prior 
knowledge are also brought into clear relief: effects of 
explaining may be reduced by incorrect or inappropriate 
prior knowledge, and may even be harmful. Examining the 
relationship between explanation and prior knowledge 
might therefore be one way to understand robust 
misconceptions and difficulties with conceptual change. 

The current findings speak to the possibility that 
explanation is a mechanism by which prior knowledge is 
brought to bear in learning. In this experimental context, 
simply providing prior knowledge was insufficient to 
support learning: the high and low prior knowledge free 
study conditions did not differ in rule discovery. It may be 
that when learners explain and must satisfy subsumptive 
constraints, prior knowledge is accessed and deployed to 
inform which patterns are subsuming, so that explaining is a 
mechanism by which prior knowledge influences learning. 
Further research could explore what kinds of prior 
knowledge explaining might deploy, such as logical or 
causal inferences versus information stored in memory. 
Another issue concerns the amount of prior knowledge 
necessary for these interactive effects. The current 
experiments compared just two levels of prior knowledge, 
although prior knowledge spans a much broader continuum. 

If explaining deploys prior knowledge in learning, it may 
be that spontaneously explaining category membership 
plays a role in knowledge effects on category learning. This 
possibility is bolstered by demonstrations that explaining 
increases use of features that are unified by prior knowledge 
into thematic patterns (Chin-Parker et al, 2006; Williams et 



al, in press). Moreover, Wisniewski & Medin (1994) 
reported that activating prior knowledge through meaningful 
category labels drove the construction of novel and abstract 
features. The effects they report may in fact be best 
understood in terms of an interaction between prior 
knowledge and explanations for category membership, 
which the subsumptive constraints account can help explain. 

Explanation’s effects on category learning warrant an 
examination of the relationship between explanation-based 
learning and existing models of category learning. While the 
subsumptive constraints account aligns naturally with rule-
based models (e.g. Nosofsky et al, 1994), the reported 
interaction shows how both our account and rule-based 
models need to be extended to account for effects of prior 
knowledge on which rules count as good bases for category 
membership. More broadly, while representations such as 
exemplars play one role in learning about a category, the 
effect of explanation may be to construct more abstract 
representations that are consistent with general prior 
knowledge about a category, such as its origin or function. 

The current work suggests a number of future directions. 
Do different types of prior knowledge differentially support 
learning, such as prior knowledge about causal mechanisms 
vs. functions? When does prior knowledge help because it 
supplies candidate patterns that can subsume observations, 
versus help because it informs which patterns are 
subsuming? Given that subsumption and consistency with 
prior knowledge both constrain learning, how do they trade 
off? These and further questions await future research. 
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