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Abstract 

How does explaining novel observations influence the 

extent to which learners revise beliefs in the face of 

anomalies – observations inconsistent with their beliefs? On 

one hand, explaining could recruit prior beliefs and reduce 

belief revision if learners “explain away” or discount 

anomalies. On the other hand, explaining could promote 

belief revision by encouraging learners to modify beliefs to 

better accommodate anomalies. We explore these possibilities 

in a statistical judgment task in which participants learned to 

rank students’ performance across courses by observing 

sample rankings. We manipulated whether participants were 

prompted to explain the rankings or to share their thoughts 

about them during study, and also the proportion of 

observations that were anomalous with respect to intuitive 

statistical misconceptions. Explaining promoted greater belief 

revision when anomalies were common, but had no effect 

when rare. In contrast, increasing the number of anomalies 

had no effect on belief revision without prompts to explain. 

 

Keywords: explanation, self-explanation, learning, 
generalization, statistics, misconceptions, anomalies. 

Introduction 

Human learning relies on the ability to use novel 

observations about the world to revise current beliefs. This 

raises basic questions about how observations impact 

beliefs, and in particular how different cognitive processes 

influence the process of belief revision. The current paper 

examines how explaining observations that are anomalous 

with respect to a learners’ current beliefs influences the 

nature of belief revision.  

Previous research reveals that seeking and generating 

explanations can play an important role in learning and 

reasoning across a variety of task and domains, including 

learning novel categories (Williams & Lombrozo, 2010), 

inferring causal relationships (Koslowski, 1996), and 

generalizing the properties of people and objects from 

known to unknown cases (Rehder, 2009; Sloman, 1994). In 

addition, generating explanations can drive conceptual 

development in children (Wellman & Liu, 2006) and has 

been shown to have important pedagogical benefits in a 

variety of educational contexts (e.g. Fonseca & Chi, 2011). 

Despite widespread appreciation for the impact of 

explaining on learning and belief revision, current accounts 

of explanation’s effects pose a challenging puzzle. On the 

one hand, explaining is frequently hypothesized to 

encourage learners to accommodate novel observations in 

the context of their prior beliefs (Ahn, Brewer & Mooney, 

1992; Chi et al, 1994; Lombrozo, 2006; Walker, Williams, 

Lombrozo & Gopnik, under review; Williams & Lombrozo, 

2010). This suggests that explaining could lead learners to 

draw on a range of belief-preserving strategies in the face of 

anomalous observations (Chinn & Brewer, 1993; Kuhn, 

1962; Koslowski, 1996; Lord, Lepper, & Ross, 1979). 

Learners who seek explanations could engage in less belief 

revision (relative to those who do not explain) if they 

“explain away” anomalies by discounting them as 

implausible, or reinterpret observations as consistent with or 

irrelevant to preferred theories.  

On the other hand, explaining anomalies could prompt 

learners to reject their currently-held beliefs and construct 

new theories that better accommodate the anomalous 

observations. For example, explaining could ensure that 

anomalies are not simply ignored, increasing learners’ 

allocation of attention and processing time to these 

unanticipated observations (Legare, 2010; Siegler, 2002). In 

addition, explaining could encourage learners to seek and 

discover general patterns that go beyond prior beliefs to 

capture the anomalies being explained (Walker, Williams, 

Lombrozo & Gopnik, under review; Williams & Lombrozo, 

2010).  

A third possibility is that explaining has the potential to 

produce both effects. Whether explaining preserves or 

revises beliefs could depend on the nature of the evidence 

provided by the anomalies. For example, relative to other 

learning strategies, explaining could encourage learners to 

discount anomalous observations if they are infrequent or 

there is no alternative theory available to explain them.  

However, seeking explanations for more extensive 

inconsistencies could emphasize the limitations of current 

beliefs and guide learners to alternative theories, thus 

promoting more radical belief revision. 

We investigate these possibilities in the context of a 

statistical judgment task in which participants learn a system 

for ranking students’ performance across different courses. 

Participants learn to rank by observing sample rankings, and 

they are either prompted to provide explanations for the 

rankings or to engage in free study as a control condition. 

Previous research suggests that participants’ prior beliefs 

will favor rankings on the basis of statistically problematic 

principles rather than one that is normatively defensible 

(e.g., Schwartz & Martin, 2003; Belenky & Nokes-Malach, 

in press). We can therefore manipulate how many of the 

sample rankings happen to be consistent with the non-
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normative principles, and how many are anomalous and 

only accounted for by the correct principle. This allows us 

to examine how the process of belief revision is influenced 

by explaining the novel observations (the sample rankings), 

by the number of anomalous observations, and by any 

interaction between these factors. 

Experiment 

Participants were instructed to learn how a university 

ranks their students across different courses by studying five 

examples of ranked pairs of students. Each example 

reported which of two students in two different courses was 

ranked higher, listing each student’s (percentage) grade 

along with each course’s mean grade, average deviation (the 

average absolute deviation), and minimum and maximum 

grade. We used average deviation as a measure of 

variability instead of standard deviation to follow past 

research in avoiding the need for formulas and using a 

concept more transparent to participants (Schwartz & 

Martin, 2003; Belenky & Nokes-Malach, in press). 

All five examples were ranked according to a relative-to-

deviation principle: the better student was the one that 

scored a greater number of average deviations above the 

mean (see Schwartz & Martin, 2003; Belenky & Nokes-

Malach, in press). However, some of the examples were 

also consistent with three non-normative principles (e.g. the 

student with higher absolute scores is always ranked 

higher). These are described further in the Materials & 

Procedure section, below.  

To probe how anomalous observations influenced belief 

revision, we manipulated how many of the five ranked 

examples were consistent (or anomalous) with respect to the 

non-normative principles. The relative-to-deviation 

principle always accounted for all five examples. In the 

single anomaly condition, four of the five example rankings 

also conformed to the non-normative principles, and there 

was just one anomaly that was inconsistent with them. In 

the multiple anomalies condition, there were four anomalies 

and only one of the five rankings was consistent with the 

non-normative principles.  

To examine how explaining interacted with anomalies to 

impact learning, we also manipulated the extent to which 

participants engaged in explanation. In the explain condition 

we prompted participants to explain each ranked example. 

In the free study control condition, participants were free to 

use any study strategy, but were prompted to articulate their 

thoughts while studying each ranked example. Like 

explaining, this control condition involved paying attention 

to the details of the cases and articulating one’s thinking in 

language. 

As discussed in the introduction, engaging in explanation 

and varying the number of anomalies could impact belief 

revision in several ways. Explaining the anomalies could 

reduce the revision of prior beliefs and inhibit learning 

about the relative-to-deviation principle. This effect could 

be especially potent when there is only a single anomaly to 

the non-normative principles. On the other hand, explaining 

could magnify the effects of anomalies in rejecting belief in 

the non-normative principles and instead encourage learners 

to induce and adopt the relative-to-deviation principle.  

Finally, the effects of explaining could depend on whether 

the explained observations include a single anomaly or 

many. Explaining could have a large impact on belief 

revision in the context of multiple anomalies, but have no 

effect or even inhibit belief revision when only a single (and 

easily discounted) anomaly is present. Alternatively, 

explaining could boost the impact of a single anomaly that 

might otherwise be ignored, but have no effect (relative to 

control) when there are multiple anomalies that make the 

need for belief revision completely apparent. The design of 

our experiment allows us to differentiate these possibilities. 

Methods 

 Participants 

Participants were 275 adults recruited online through the 

Amazon Mechanical Turk marketplace and reimbursed for 

their time.
1 

Materials & Procedure 

The materials consisted of five examples of student pairs 

ranked by the university, ten unranked pre-test pairs, and ten 

unranked post-test pairs. The experiment involved 

introduction, pre-test, study, and post-test phases. 

 

Introduction Participants were informed that they would 

observe pairs of students from different classes whose 

academic performance had been ranked by the university, 

and that their goal was to learn the ranking system 

employed. They were given the definition of “average” – 

the sum of all scores divided by the number of students in a 

class – and “average deviation” – the sum of all the 

(absolute) differences between student scores and the 

average, divided by the number of students. 

 

Ranked examples for study During study, five examples 

of ranked student pairs were presented. A ranked example 

(see Figure 1a and 1b) stated which student was ranked 

higher by the university, and reported each student’s: (1) 

name (e.g., Sarah); (2) class (e.g., Sociology); (3) class’s 

mean score (e.g., 79%); (4) class’s average deviation (e.g.,  

8%); (5) class’s minimum score (e.g., 67%); and (6) class’s 

maximum score (e.g., 90%).  

 

Principles for ranking students Participants could 

interpret or predict the rank of each student pair using at 

least four principles. The three non-normative principles 

were incorrect but designed to correspond to intuitive 

statistical misconceptions. 

                                                
1
 We included a question that assessed whether participants were 

actually reading instructions (Oppenheimer et al, 2009). The 

pattern of results was the same if participants who did not pass this 

test were excluded.  
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Figure 1: (a) A consistent ranked example for which all four principles predicted the same ranking. (b) An anomalous ranked 

example constructed by switching the class average deviations of the consistent example from Figure 1a. The switch means 

that the correct relative-to-deviation ranking is now the opposite of what is predicted by the raw-score, relative-to-average, 

and relative-to-range principles. Emphasis is added for illustration and was not provided to participants. 

 

We term the principles (1) raw-score: the higher ranking 

went to the student with the higher score, irrespective of 

mean, average deviation, and minimum or maximum score; 

(2) relative-to-average: the higher ranking went to the 

student whose score was the farthest above (or least below) 

the class’s mean score; (3) relative-to-range: the higher 

ranking went to the student whose score was farther from 

the average relative to the range in class scores, where this 

was calculated as the difference from the mean divided by 

the range. 

The relative-to-range principle privileges the score that is 

farther from the mean as measured in “range-units,” 

capturing some notion of variability (when range is 

correlated with variability), and could be approximated by 

looking at a score’s distance from the maximum score. 

The fourth and more accurate relative-to-deviation 

principle favored whichever score was a greater number of 

average deviations above the mean. This was calculated as 

the difference from the mean divided by the average 

deviation, and is closely related to normative measures such 

as the standard deviation and z-score, indicating the 

person’s score relative to the distribution of scores in the 

class.  

 

Consistent vs. anomalous examples All five ranked 

examples conformed to the relative-to-deviation principle. 

However, a ranked study example could be consistent with 

or anomalous with respect to the ranking given by the raw-

score, relative-to-average, and relative-to-range principles, 

all of which always generated identical rankings on study 

examples (see Figure 1a and 1b). Five consistent examples 

were constructed so that each could be converted to an 

anomalous example by switching the average deviation of 

the two students’ classes. This permitted a close match 

between consistent and anomalous examples on all other 

dimensions (compare Figure 1b to Figure 1a).  

In the single anomaly condition there were four consistent 

examples and one anomalous example. The multiple 

anomalies condition had the opposite ratio: one consistent 

example and four anomalous examples. 

 

Pre-test To provide a baseline measure of belief before 

study, participants were presented with ten unranked student 

pairs. They judged which student the university would rank 

higher, and rated confidence in their judgment on a scale 

from 1 (“not at all”)  to 7 (“extremely”).  

The ten student pairs were designed to identify the 

principle(s) that participants used to rank students, and thus 

pitted candidate principles against each other. Specifically, 

there were two instances of each of the following types of 

pairs, pitting (1) the relative-to-deviation principle against 

the three non-normative principles (like anomalous study 

examples); (2) the raw-score principle against the other 

three principles; (3) the relative-to-average principle against 

the other three principles; (4) the relative-to-range principle 

against the other three principles; and (5) the two principles 

that were most sensitive to variability, relative-to-range and 

relative-to-deviation, against the raw-score and relative-to-

average principles.  

 

Study Each of the five ranked examples was presented 

onscreen for exactly 90 seconds in a format similar to 

Figure 1a and 1b. Participants in the explain condition were 

prompted to explain why the higher-ranked student was 

ranked more highly, typing their explanation into a text box 

onscreen. Participants in the free study control condition 

were told to type their thoughts during study into an 

equivalent text box.  

 

Post-test To assess belief after study, participants’ 

ranking judgments and confidence ratings were solicited for 

ten unranked student pairs. All names and grades were 

changed from the pairs used in pre-test, but five points were 

added to each grade to generate novel numbers while 

preserving the way in which the items pitted the principles 

against each other.
2
  

                                                
2
 Additional questions were asked at the end of the experiment 

(e.g. demographics, sufficient time for task, strategy) but are not 

further discussed here in the interest of space. 

(a) Sarah got 85% in a Sociology class, where the 
average score was 79%, the average deviation 
was 8%, the minimum score was 67%, and the 
maximum score was 90%.   
 
Tom got 69% in a Art History class, where the 
average score was 65%, the average deviation 
was 3%, the minimum score was 42%, and the 
maximum score was 87%. 
 
Sarah was ranked more highly by the university than 
Tom. 

(b) Sarah got 85% in a Sociology class, where the 
average score was 79%, the average deviation 
was 3%, the minimum score was 67%, and the 
maximum score was 90%. 
   
Tom got 69% in a Art History class, where the 
average score was 65%, the average deviation 
was 8%, the minimum score was 42%, and the 
maximum score was 87%. 
 
Tom was ranked more highly by the university than 
Sarah. 
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Results 

Overall pre- and post-test accuracy Learning was 

assessed by comparing accuracy on the pre-test and post-test 

items. Correct responses were considered to be those that 

were consistent with the relative-to-deviation principle. 

Figure 2 reports an overall measure of accuracy across all 

pre-test and post-test items as a function of learning task and 

number of anomalies. Accuracy improved from pre- to post-

test: A 2 (task: explain vs. free study) x 2 (number of 

anomalies: single vs. multiple) x 2 (test: pre-test vs. post-

test) repeated measures ANOVA found a main effect of test 

(pre- vs. post-) on overall accuracy, F(1, 269) = 4.33, p < 

0.05. 

The ANOVA additionally revealed interactions between 

test and learning task, F(1,269) = 4.95, p < 0.05, and 

between test and number of anomalies, F(1,269) = 3.88, p < 

0.05. These effects were driven by a greater boost in pre- to 

post-test accuracy for participants in the explain – multiple 

anomalies conditions, which in turn was driven primarily by 

rankings on anomalous items, as discussed further below.  

Anomalous items: Change in pre- to post-test accuracy 

Figure 3 reports accuracy on anomalous pre-test and post-

test items. These items were analogous to the anomalies at 

study in pitting the relative-to-deviation principle against all 

three non-normative principles. Accuracy on these items 

was critical to testing our hypotheses about the effects of 

explanation and anomalies on the revision of beliefs to favor 

the relative-to-deviation principle over the non-normative 

alternatives. Accuracy on anomalous items improved from 

pre- to post-test: A 2 (task: explain vs. free study) x 2 

(number of anomalies: single vs. multiple) x 2 (test: pre-test 

vs. post-test) ANOVA on accuracy on anomalous items 

revealed a main effect of pre- vs. post- test, F(1, 269) = 

63.85, p < 0.05.
3
  

Subsequent analyses directly examined the pre-test to 

post-test change in accuracy on the anomalous items. Figure 

4 reports performance on this measure, calculated as post-

test accuracy minus pre-test accuracy.  

A 2  (task: explain vs. free study) x 2 (anomalies: single 

vs. multiple) ANOVA on the pre- to post-test change in 

accuracy on anomalous items revealed a significant effect of 

number of anomalies, F(1, 266) = 12.8, p < 0.05. This main 

effect was qualified by an interaction between learning task 

and number of anomalies, F(1, 266) = 7.77, p < 0.05. No 

other effects were significant.  

 

                                                
3
 The ANOVA on accuracy for anomalous items revealed a 

number of additional effects, the relevance of which is more 

readily communicated in our subsequent analyses on the pre- to 

post- test change in accuracy. These include a two-way interaction 

between test and number of anomalies, F(1,266) = 12.80, p < 

0.001, a three-way interaction between test, learning task and 

number of anomalies, F(1,266) = 7.77, p < 0.01, and main effects 

of task, F(1,266) = 4.80, p < 0.05, and number of 

anomalies, F(1,266) = 8.45, p < 0.005. 

 
Figure 2: Accuracy on all pre-test and post-test items, by 

learning task and number of anomalies. 

 

 

 
Figure 3: Accuracy on anomalous pre-test and post-test 

items, by learning task and number of anomalies. 

 

 
Figure 4: Change from pre-test to post-test in accuracy on 

anomalous items, by learning task and number of 

anomalies. 

 

When there were multiple anomalies, participants 

prompted to explain showed greater learning (relative to 

free study) about the relative-to-deviation principle, t(126) = 

2.44, p < 0.05. But when only a single anomaly was present, 

there was no significant effect of explanation, t(143) = 1.13, 

p = 0.26. 
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In sum, although explaining helped participants learn the 

challenging relative-to-deviation principle over more 

intuitive alternatives, this benefit only exceeded that 

observed in the control condition when many anomalies 

were explained. It could be that the effects of explaining one 

anomaly were too small to yield a statistically significant 

effect. But a more intriguing possibility – suggested by the 

(non-significant) trend for control participants to show 

greater learning gains than explain participants in the single 

anomaly condition (see Figure 4) – is that explaining 

actually hindered belief revision by encouraging participants 

to discount the single anomalous observation. 

It is worth emphasizing that the learning benefits 

observed in the explain – many anomalies condition cannot 

be attributed simply to the effects of receiving more 

anomalies. Receiving multiple anomalies (relative to 

observing a single anomaly) promoted greater learning 

when participants were prompted to explain, t(135) = 2.24, 

p < 0.05. However, in the free study control condition, 

observing a greater number of anomalies did not produce a 

significant learning benefit, t(134) = 0.55, p = 0.58. Without 

explaining, the potential learning benefits of anomalous 

information may not be realized.  

Discussion 

In an experiment involving statistical judgments, we 

found that participants who were prompted to explain 

observations engaged in greater belief revision than 

participants who engaged in a control task matched for time, 

attention, and use of language. Specifically, participants 

who explained showed a greater increase from pre- to post-

test in their use of a normative principle for ranking 

students’ performance across courses (the relative-to-

deviation principle). However, this benefit was only 

observed when the observations that participants explained 

involved multiple anomalies – observations inconsistent 

with non-normative principles that were arguably more 

intuitive and more consistent with prior beliefs. When a 

single anomaly was presented, participants who explained 

showed comparable or (nonsignificantly) less learning than 

those in the control condition.  

In the introduction we presented several plausible 

hypotheses about the effects of explaining anomalies. One 

possibility was that explaining anomalous observations 

would lead learners to consult current beliefs in making 

sense of the unanticipated observation, and therefore be 

more likely to preserve their current beliefs by somehow 

explaining away or discounting the anomaly (Chinn & 

Brewer, 1993). In the present experiment, for example, 

participants could have invoked a clerical error to explain an 

unanticipated observation, or generated reasons for a 

ranking that went beyond the information provided (e.g., 

perhaps a given course was especially difficult and therefore 

taken by students who were already high achievers).  

If explaining encouraged participants to engage in such 

belief-preserving strategies independently of the number of 

anomalous observations, then pre- to post-test performance 

should have increased more for participants in the control 

condition than for those in the explain condition. While 

there was a trend in this direction when a single anomaly 

was presented, the findings do not provide clear support for 

this hypothesis.  

Explanation-induced failures to revise belief in light of 

anomalies could be more likely in contexts where 

participants hold stronger prior beliefs. In fact, Williams, 

Lombrozo, and Rehder (2010) report an “explanation 

impairment effect” along these lines. It should be noted, 

however, that under some conditions maintaining current 

beliefs in the face of anomalous observations could be the 

correct or rational strategy. For example, when observations 

are erroneous or generated by probabilistic processes it 

could be preferable for learners to discount anomalous 

observations on the basis of (more accurate) prior beliefs. 

A second hypothesis that we considered at the outset was 

that explaining anomalous observations would increase 

belief revision, perhaps by drawing attention to anomalies or 

forcing participants to identify patterns that would account 

for the anomalous observations and past observations in a 

unified way. While we found support for this hypothesis 

when many anomalies were presented, explaining did not 

have a measurable advantage when participants only 

observed a single anomaly.  

Our findings are therefore consistent with a third 

possibility: that the effects of explanation interact with the 

number of anomalous observations. The number of 

anomalies per se may not be crucial, but rather serve (in the 

current experiments) as an indication of the strength of the 

evidence that current beliefs require revision. It could be 

that explaining few anomalous observations has no effect 

(relative to control), encourages belief-preserving strategies, 

or has variable effects across participants, while explaining 

multiple (or more problematic) anomalies more uniformly 

increases the extent to which participants revise beliefs to 

achieve consistency with observations. 

It’s also noteworthy that in the absence of explanation, 

encountering additional anomalies was insufficient to 

increase belief revision: In the free study condition, 

observing multiple anomalies (80% of observations) did not 

yield any significant learning benefit beyond observing just 

one. Chinn and Brewer (1993) point out that anomalies do 

not always lead to changes in belief given the number of 

belief-preserving strategies available to learners, and our 

findings are consistent with this observation.  Explaining 

could therefore be especially valuable as a strategy for 

ensuring that learners benefit from anomalous observations, 

especially in pedagogical contexts in which anomalies are 

likely to highlight misconceptions and point to normative 

alternatives.  

In previous work we have proposed a subsumptive 

constraints account of the effects of explanation on learning 

(Williams & Lombrozo, 2010), and we interpret the current 

results as broadly consistent with this proposal. According 

to this account, explaining does not provide a general boost 

to processing, but rather exerts a selective constraint to 
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interpret what is being explained as an instance of a broader 

pattern or generalization. One substantiated prediction of 

this account is that explaining guides people towards 

patterns that apply to more observations – that is, those that 

render fewer observations anomalous (Williams & 

Lombrozo, 2010). A second is that explaining increases 

learners’ consultation of prior beliefs to privilege patterns 

that prior beliefs suggest will generalize to other contexts 

(Walker et al., under review; Williams & Lombrozo, 2010b; 

Williams & Lombrozo, under review).  

In the current experiment, the correct relative-to-deviation 

principle involved fewer (zero) anomalies, but the 

alternative principles were more consistent with most 

people’s prior beliefs concerning ranking. Explaining could 

therefore have favored the relative-to-deviation principle in 

the multiple anomaly condition because the evidence 

indicated that current beliefs were problematic. In contrast, 

participants in the single anomaly condition – depending on 

the strength of their prior beliefs – could have been inclined 

to favor current beliefs or to consider revision in the face of 

weak evidence for an alternative. These observations raise a 

number of important questions for future research 

concerning the precise conditions under which explaining 

anomalies will revise or entrench current beliefs. 
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