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Abstract 

Like scientists, children and adults learn by asking questions 
and making interventions. How does this ability develop? We 
investigate how children (7- and 10-year-olds) and adults 
search for information to learn which kinds of objects share a 
novel causal property. In particular, we consider whether 
children ask questions and select interventions that are as 
informative as those of adults, and whether they recognize 
when to stop searching for information to provide a solution. 
We find an anticipated developmental improvement in 
information search efficiency. We also present a formal 
analysis that allows us to identify the basis for children’s 
inefficiency. In our 20-questions-style task, children initially 
ask questions and make interventions no less efficiently than 
adults do, but continue to search for information past the point 
at which they have narrowed their hypothesis space to a 
single option. In other words, the performance change from 
age seven to adulthood is due largely to a change in 
implementing a “stopping rule”; when considering only the 
minimum number of queries participants would have needed 
to identify the correct hypothesis, age differences disappear.  

Keywords: information search, active learning, 20-questions 
game, cognitive development. 

Introduction 
How should one seek evidence to test a hypothesis? This 

question has been discussed extensively within the 
philosophy of science (e.g., Crupi, 2014), and also describes 
a basic challenge faced by learners of any age (e.g., Markant 
& Gureckis, 2012; McKenzie & Mikkelsen, 2000; Oaksford 
& Chater, 1994): deciding which piece of evidence is most 
valuable to obtain, be it by questioning knowledgeable 
informants or directly intervening on the world. Here we 
explore how children (7- and 10-year-olds) and adults seek 
information in the context of a hierarchical causal inference 
task, with the aim of identifying the nature and source of 
variation in the efficiency of search across development. 

Causal inference often requires categorizing objects and 
determining the level at which a given causal property 
applies. For example, most exemplars of the basic-level 
category lamp produce light, but not all pieces of furniture, 
the superordinate-level category, do. Using a 20-question-
style task, we consider whether children are able to ask 
questions and select interventions that are as informative as 
those of adults, and whether they are able to recognize when 
to stop searching for information to provide a solution. 

Previous research investigating children’s information 
search has used variants of the “20-questions game,” where 
the task is to identify an unknown target object by asking as 
few yes-or-no questions as possible, either generating the 
questions from scratch (e.g., Chouniard, 2007; Legare et al., 
2013; Mosher & Hornsby, 1966; Ruggeri & Lombrozo, 
2015) or selecting them from a list of provided alternatives 
(Nelson et al., 2013). These studies compared different age 
groups and found that the ability to ask effective questions 
undergoes a large developmental change from age 4 to 11.  

In the current paper, we go beyond previous work in three 
ways. First, we adopt a quantitative approach, formalizing 
the efficiency of information search across development 
from age 7 to adulthood. This formal approach allows us to 
disentangle two components, or building blocks (Gigerenzer 
et al., 1999), required for performance: (1) an information 
search component, which involves the ability to select the 
most efficient information search path (e.g., to ask the most 
informative question at each time point), and (2) a stopping 
rule, which establishes when enough information has been 
collected. Our analysis aims at identifying which of these 
components accounts for developmental differences in 
information search. One intriguing possibility is that 
children are just as efficient as adults in their information 
search, but differ with respect to their stopping rule: they 
continue to seek information even when it is no longer 
needed to constrain their search. Beyond developmental 
comparisons, our formal approach allows us to measure the 
efficiency of children’s information search strategies in 
absolute terms, by comparing their strategies to optimal or 
chance models (see Nelson et al., 2013). 

Second, we compare two ways in which information can 
be sought: by asking yes-or-no questions (question asking) 
or by selecting single objects to test sequentially 
(intervention). These two paradigms present different 
challenges for the learner. The question-asking paradigm 
involves an explicit, verbal component, but also allows 
children to target entire categories directly. For instance, a 
child in the question-asking condition can ask whether “all 
lamps” have a given property, but a child in the intervention 
condition would have to test this hypothesis by selecting 
individual lamps and non-lamps one at a time. These 
conditions potentially correspond to how information search 
might unfold when learning from a knowledgeable 
informant versus directly from the world. 
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Third, we consider the role of hierarchical structure in 
information search. In our 20-questions-style task the 
objects are hierarchically organized and the possible 
solutions correspond to the levels of this structure. Using a 
hierarchical structure allows us to investigate how children 
search for information in a more complex and realistic 
environment, as opposed to the traditional scenario where 
one has to search for a single, arbitrarily-chosen object. This 
structure also allows us to consider whether children treat 
more abstract hypotheses preferentially, for instance by 
using them to initiate their search, and if so, whether they 
are only able to do so when asking questions (which can 
target higher levels in the hierarchy directly) versus making 
interventions. Higher-order hypotheses might be especially 
important not only in guiding efficient search, but in 
constraining induction more generally (Goodman, 1955). 

 
Table 1. Materials and scenarios used in Study 1 and 2.  

 

Scenario Superordinate  
category 

Basic-level 
category 

Subordinate  
category 

Planet Apres 

Animals 
Fish Goldfish 

Clownfish 

Birds Parrots 
Owls 

Plants 
Trees Apple trees 

Pine trees 

Flowers Tulips 
Daisies 

Machine 

Clothes 
Shirts Long sleeves 

Short sleeves 

Shoes Flip-flops 
Boots 

Furniture 
Tables Dining tables 

Desk 

Chairs Rocking chair 
High chair 

Magic-box 

Vehicles 
Cars Vans 

Sportcars 

Planes Planes 
Helicopters 

Fruit 
Apples Yellow apples 

Green apples 

Berries Raspberries 
Blueberries 

 
The Hierarchical 20-Questions Task. We designed a new 
task to investigate the role of hierarchical structure in 
information search, modeled after 20-questions tasks that 
have been used with children in prior research (see Mosher 
& Hornsby, 1966; Ruggeri & Lombrozo, 2015). In each of 
three trials, participants were presented with 16 objects on 
an iPad screen (in a random arrangement) and had to find 
out which set of objects shared a novel causal property. For 
example, they had to find out what kind of objects would 
turn on a machine. In Study 1 (question asking), they did so 
by asking yes-or-no questions, whereas in Study 2 
(intervention), they selected and received feedback about 
individual objects by touching them on the screen. The 16 
objects were organized hierarchically, with three levels (see 
Table 1): there were two sets of eight objects (superordinate 

level), each containing two sets of four objects (basic level), 
each containing two sets of two objects (subordinate level). 
We manipulated the category level of the objects 
constituting the solution across the three trials, which were 
presented to the participants in random order. Each trial was 
randomly assigned to one of three different scenarios. After 
each question asked or object touched, participants received 
feedback from the experimenter with a response of “yes,” 
“no,” or (in Study 1) “some.” They were prompted to put a 
red (“no” feedback) or green (“yes” feedback) frame around 
the object/s to which their question referred, thus reducing 
memory demands. After receiving feedback, participants 
could choose whether to ask one more question (or select 
one more object) or to guess the solution. Participants could 
ask as many questions (or select as many objects) and guess 
the solution as many times as they wanted to, but were told 
to find the solution with as few questions (or selecting as 
few objects) as possible. At the end of the three trials 
constituting the experimental session, participants 
performed a sorting task to determine whether they 
appreciated the hierarchical structure and were able to 
verbally label categories at each level.  
 
The Bayesian Framework. Our models and analyses are 
based on a Bayesian framework for concept learning and 
generalization (Tenenbaum & Griffiths, 2001). The 
learner’s hypothesis space is the set of hypotheses about 
which category of objects has the target causal property 
(e.g., turning on the machine). In our case, the hypothesis 
space consists of 14 alternative hypotheses, corresponding 
to all the object categories at any hierarchical level. We do 
not consider single-object hypotheses (e.g., only the yellow 
desk) because participants are explicitly told that the causal 
property applies to more than one object. Moreover, we do 
not consider disjunctive hypotheses, i.e., the combinations 
of objects across categories, such as “a boot or a desk can 
turn on the machine.” Such hypotheses were never provided 
by participants as possible solutions. Because participants 
were told that all categories, at any level, were equally 
likely to be true, we assume that participants initially 
expected all hypotheses to be equally likely, regardless of 
their level in the hierarchy.  

To update their beliefs, we assume that after each 
observation x, participants evaluate all candidate hypotheses  
(i.e., those that are compatible with all observations X 
collected until that point) according to Bayes’ rule: 
computing their posterior probability p(h|X), which is 
proportional to the product of their prior probabilities p(h) 
and likelihoods p(X|h): 
 

𝑝(ℎ|𝑋)   =     
𝑝 𝑋 ℎ 𝑝(ℎ)
𝑝(𝑋|ℎ′)𝑝(ℎ!)!"

  

  
The prior p(h) represents participants’ expectations about 

how likely the candidate hypotheses are. The likelihood 
p(X|h) represents how likely it is that X would be observed 
if h is true. Here we make the simplifying assumption that 
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for each observation x, p(x|h) is 1 if the observation is 
compatible with h and 0 otherwise, and that observations are 
independent conditioned on h, so p(X|h) is just the product 
of p(x|h) for each observation x. The posterior p(h|X) is thus 
a function of the observations X and prior knowledge about 
the likelihood of the candidate hypothesis considered. 
 
Information gain. Within the Bayesian framework it is 
possible to compute how informative each search option 
(question or object) is in terms of the expected information 
gain (e.g., Oaksford & Chater, 1994).  

At each step of the search process, the participant 
evaluates all the possible actions in terms of their 
information gain, computed by subtracting the predicted 
posterior entropy from the prior entropy: 

 
𝐼 = 𝐻!"#$" −   𝐻!"#$%&'"& . 

The entropy H embodies the uncertainty as to which, 
among the candidate hypotheses, is true. Its computation is 
based on the probabilities of each of the candidate 
hypotheses:  

 

𝐻!"#$" =   −    𝑝 ℎ   log!  𝑝(ℎ)
!

   

The prior entropy Hprior defines the status of uncertainty 
preceding every action. The predictive posterior entropy 
Hposterior refers to the predicted status of uncertainty after the 
action is chosen and the correspondent feedback is 
observed. The predictive posterior entropy is measured as 
the sum of the entropies corresponding to each possible 
future scenario weighted according to the probability of that 
scenario: 

 
𝐻!"#$%&'"& = 𝑝 𝑥!|𝑋 𝐻 𝑥! +   …   + 𝑝 𝑥!|𝑋 𝐻(𝑥!) 

where xi is a possible observation, p(xi|X) is the probability 
of that observation resulting from taking the candidate 
action given all the information from previous observations, 
and H(xi) is the entropy of the posterior distribution over 
hypotheses after observing xi.. More formally,  
 

𝑝 𝑥! 𝑋 = 𝑝 𝑥! ℎ 𝑝 ℎ 𝑋
!

 

𝐻 𝑥! =   − 𝑝 ℎ 𝑋, 𝑥! log! 𝑝(ℎ|𝑋, 𝑥!)
!

 

Study 1: Question-asking 

Participants. Participants were 24 children in second grade 
(10 female, Mage = 90.5 months; SD = 5.56 months), and 23 
children in fifth grade (8 female, Mage = 119.4 months; SD = 
12.7 months), recruited from a primary school and a local 
children’s museum, as well as 23 university students (15 
female, Mage = 21.1 years; SD = 2.6 years). 

Results 
Results were analyzed by running repeated-measures 
ANOVAs with age group (3 levels: 7-year-olds, 10-year-
olds, adults) as a between-subjects variable and trial number 
(3 levels: 1, 2, 3), solution condition (3 levels: subordinate-
level, basic-level, superordinate-level) or scenario (3 levels: 
Magic box, Machine, Planet) as within-subjects variables. 
All main effects and interactions were tested; we report only 
significant effects.  
 
Descriptive analysis. We analyzed the questions asked 
prior to reaching the correct solution (which we refer to as 
the “complete path”). We found a main effect of age group 
on the number of questions asked prior to giving the 
solution, F(2, 67) = 5.29, p = .007, η2 = .136. A Bonferroni 
corrected multiple comparisons analysis confirmed that 7-
year-olds (M7-year-olds = 4.92, SE = .34) asked more questions 
than adults (Madults = 3.36, SE = .35, p = .006). We did not 
find any difference between the number of questions asked 
between 7- and 10-year-olds (M10-year-olds = 4.38, SE = .35, p 
= .807), or between 10-year-olds and adults (p = .126). We 
did not find any within-subject effect of scenario or trial 
number, but we did find an effect of condition, F(2, 67) = 
20.02, p < .001, η2 = .320. A Bonferroni corrected multiple 
comparisons analysis showed that participants needed fewer 
questions in the superordinate condition (Msuperordinate = 3.37, 
SE = .26) than in the basic condition (Mbasic = 4.08, SE = 
.24, p = .038), and in the basic condition than in the 
subordinate condition (Msubordinate = 5.21, SE = .31, p < .001). 

 

     
Figure 1. Study 1: Average information gain of the 

questions asked before giving the solution (complete path) 
or before having narrowed down the hypothesis space to one 
hypothesis (shortest path). Error bars represent one SEM in 
each direction. 

 
The analysis also showed a main effect of age group on 

the average information gain of the questions asked prior to 
giving the solution, F(2, 67) = 5.27, p = .007, η2 = .136 (see 
Figure 1). A Bonferroni corrected multiple comparisons 
analysis confirmed that the average information gain of the 
questions asked by 7-year-olds (M7-year-olds = .74, SE = .04) 
was lower than the average information gain of the 
questions asked by adults (Madults = .92, SE = .04, p = .006). 
There were no differences between 7- and 10-year-olds 
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(M10-year-olds = .85, SE = .04, p = .185) nor between 10-year-
olds and adults (p = .123).  

 
Level of the first question asked. Across the three trials, 
adults asked a larger number of first questions at the 
superordinate level (Madults = 1.87, SE = .16) than did older 
children (M10-year-olds = 1.13, SE = .20), t(162) = -3.33, p = 
.001, who in turn asked a larger number of such questions 
than did younger children (M7-year-olds = .41, SE = .16), t(145) 
= -3.02, p = .003. Symmetrically, adults asked fewer first 
questions at the subordinate level (Madults = .13, SE = .06) 
than did older children (M10-year-olds = .29, SE = .10), t(162) = 
-3.14, p = .002, who in turn asked fewer such questions than 
did younger children (M7-year-olds = .69, SE = .17), t(145) = -
2.14, p = .034. The number of initial questions at the basic 
level did not vary significantly across age groups (ps > .05): 
M7-year-olds = .79, SE = .18, M10-year-olds = .92, SE = .17, Madults 
= .55, SE = .12. 

 
Figure 2. Study 1: Average information gain, displayed by 
order of questions asked and age group (minimum number 
of participants per data point displayed = 2). Error bars 
represent one SEM in each direction. 

 
Analysis of the shortest path. To disentangle participants’ 
information search from their stopping rules, we considered 
the number and efficiency of the questions asked prior to 
obtaining enough information to identify the solution, 
whether or not the participant went on to ask additional 
(uninformative) questions. In other words, we considered 
participants’ information search had they stopped asking 
questions and stated the solution the moment a single 
hypothesis remained. We refer to this as the “shortest path.” 
Surprisingly, we did not find a main effect of age group on 
the number of questions asked in the shortest path (p = 
.122). We did not find any within-subject effect of scenario 
or trial, but we did find an effect of the level of the solution, 
F(2, 67) = 28.31, p < .001, η2 = .300. A Bonferroni 
corrected multiple comparisons analysis showed that 
participants needed fewer questions in the superordinate 
condition (Msuperordinate = 2.64, SE = .16) than in the basic 
condition (Mbasic = 3.61, SE = .15, p < .001) or in the 
subordinate condition (Msubordinate = 4.09, SE = .19, p < .001) 
prior to obtaining enough information to isolate a single 
hypothesis. There was no significant difference in the 
number of questions across the basic and subordinate 

conditions. Most interestingly, the analysis did not show a 
main effect of age group on the average information gain of 
the questions asked in the shortest path (p = .134; see Figure 
1). Thus, despite the developmental trend, the average 
information gain of the questions asked in the shortest path 
by 7-year-olds (M7-year-olds = .91, SE = .04), 10-year-olds 
(M10-year-olds = .96, SE = .04) and adults (Madults = 1.02, SE = 
.04) did not differ, suggesting that children were just as 
efficient as adults in narrowing down the hypothesis space.  

In sum, these analyses suggest that the developmental 
differences that we observed in overall efficiency were 
driven largely by children’s tendency to ask questions 
beyond the point at which a single hypothesis remained (see 
Figure 2). Eighty-three percent of the 7-year-olds (n = 20), 
70% of the 10-year-olds (n = 16), and only 52% of the 
adults (n = 12) asked, in at least one trial, more questions 
than strictly necessary to identify a single hypothesis. A 
repeated-measures ANOVA showed an age group effect on 
the number of questions asked beyond the point at which a 
single hypothesis remained, F(2, 67) = 4.50, p = .015, η2 = 
.118. A Bonferroni corrected multiple comparisons analysis 
confirmed that the 7- and 10-year-olds asked on average 
more additional questions (M7-year-olds = 1.28, SE = .22; M10-

year-olds = .81, SE = .23) than adults (Madults = .32, SE = .23, p 
= .011).  
 
Difference between an optimal model, a random model, 
and participants’ information search. We compared 
participants’ information search against an optimal model 
and a random model. The optimal model follows the best 
possible information search path – that is, it selects at each 
step the question that has the highest information gain, 
considering the current hypothesis space. The random 
model selects an option at random. This random selection is 
repeated ten times at each step, with replacement, and we 
consider the average information gain of the ten randomly 
selected options. A repeated-measures ANOVA showed that 
participants’ average information gain (Mparticipants = .83, SE 
= .02) was higher than the information gain resulting from a 
random selection (Mrandom = .50, SE = .01), but lower than 
the one resulting from the optimal model (Moptimal = 1.06, SE 
= .02), F(2, 134) = 697.97, p < .001, η2 = .91. The analysis 
revealed no main effect of age group nor interactions.  

Study 2: Intervention 

Participants. Participants were 22 children in second grade 
(7 female, Mage = 90.0 months; SD = 6.2 months) and 23 
children in fifth grade (11 female, Mage = 119.6 months; SD 
= 11.7 months), recruited from a primary school and a local 
children’s museum, as well as 22 university students (16 
female, Mage = 23.8 years; SD = 5.7 years). 

Results 
Descriptive analysis. Did the efficiency of information 
search vary across age groups or solution types when 
children selected objects, as opposed to asking questions? 
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We found a main effect of age group, F(2, 64) = 21.16, p < 
.001, η2 = .398, with fewer objects tested with increasing 
age. A Bonferroni corrected multiple comparisons analysis 
confirmed that 7-year-olds selected more objects (M7-year-olds 
= 7.79, SE = .44) than 10-year-olds (M10-year-olds = 5.96, SE = 
.43, p = .013), and 10-year-olds more than adults (Madults = 
4.11, SE = .44, p = .012). We did not find any within-subject 
effect of condition, scenario, or trial. A parallel analysis also 
revealed a main effect of age group on the average 
information gain of the objects selected prior to stating the 
solution, F(2, 64) = 11.91, p < .001, η2 = .274 (see Figure 
3). A Bonferroni corrected multiple comparisons analysis 
confirmed that the average information gain of the objects 
selected by 7-year-olds (M7-year-olds = .49, SE = .027) was 
lower than the average information gain of the objects 
selected by 10-year-olds (M10-year-olds = .60, SE = .027, p = 
.022) and adults (Madults = .68, SE = .027, p < .001). 
However, the difference between 10-year-olds and adults 
was not significant (p = .123). We did not find any within-
subject effect of condition, scenario, or trial. 

 

Figure 3. Study 2: Average information gain of the objects 
selected before giving the solution (complete path) or before 
having narrowed down the hypothesis space to one 
hypothesis (shortest path). Error bars represent one SEM in 
each direction. 
 
Analysis of the shortest path. We analyzed participants’ 
performance for the “shortest path”: the number of objects 
selected, and their associated information gain, had they 
given the solution the moment they had enough information 
to isolate a single hypothesis. The analysis revealed a main 
effect of age group on the number of objects selected prior 
to narrowing down the hypothesis space to one hypothesis, 
F(2, 64) = 9.03, p < .001, η2 = .220. A Bonferroni corrected 
multiple comparisons analysis confirmed that 7-year-olds 
selected more objects (M7-year-olds = 5.73, SE = .29) than 
adults (Madults = 4.02, SE = .29, p < .001). However, we did 
not find any differences between the number of objects 
selected by 7-year-olds and 10-year-olds (M10-year-olds = 4.77, 
SE = .28, p = .058), or 10-year-olds and adults (p = .192). 
Note that these age group effects were weaker than those 
found when analyzing all objects selected prior to giving the 
solution. We did not find any within-subject effect of 
condition, scenario or trial. 

Most interestingly, the analysis did not show a main 
effect of age group on the average information gain of the 
objects selected prior to narrowing the hypothesis-space 
down to one hypothesis (p = .060; see Figure 2), although 
there was a developmental trend from 7-year-olds (M7-year-

olds = .61, SE = .02) to 10-year-olds (M10-year-olds = .68, SE = 
.02) to adults (Madults = .69, SE = .02). Again, we did not 
find any within-subject effect of condition, scenario, or trial.   

As in Study 1, this suggests that what changes over 
development is not (only) the ability to select an efficient 
information path, but the stopping rule (see Figure 4). 
Eighty-six percent of the 7-year-olds (n = 19), 87% of the 
10-year-olds (n = 20), and only 48% of the adults (n = 10) 
selected, in at least one trial, more objects prior to giving the 
solution than they would have needed. A repeated-measures 
ANOVA showed an age group effect on the number of 
objects selected beyond the point at which a single 
hypothesis remained, F(2, 64) = 10.61, p < .001, η2 = .249. 
A Bonferroni corrected multiple comparisons analysis 
confirmed that the 7- and 10-year-olds tested on average 
more additional objects (M7-year-olds = 2.23, SE = .33; M10-year-

olds = 1.17, SE = .32) than the adults did (Madults = .09, SE = 
.33, p < .001).  

 
Figure 4. Study 2: Average information gain, displayed by 
selection number and age group (minimum number of 
participants per data point displayed = 2). Error bars 
represent one SEM in each direction. 

 
Difference between an optimal model, a random model, 
and participants’ information search. The analysis 
showed that participants’ average information gain 
(Mparticipants = .60, SE = .02) was higher than the information 
gain resulting from a random selection (Mrandom = .45, SE = 
.01), but lower than that resulting from the optimal model 
(Moptimal = .76, SE = .01), F(2, 128) = 429.49, p < .001, η2 = 
.87 The analysis revealed a main effect of age group, F(2, 
64) = 12.74, p < .001, η2 = .29, but no interactions.  

Discussion 
Across two studies involving different kinds of 

information search (asking questions versus testing objects), 
we investigated the efficiency of information search across 
development. Our task allowed us to address several related 
questions.  
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First, we adopted a quantitative approach to consider the 
role of hierarchical structure in two distinct forms of search: 
asking questions versus testing objects (interventions). We 
found that performance in the question-asking task was 
better than in the intervention task (for all age groups), as 
predicted by the optimal model. We also showed, for the 
first time, that the information search strategies of 7- and 
10-year-olds are more efficient than random strategies, both 
in a question-asking and in an intervention paradigm. We 
were also able to analyze whether children and adults are 
able to exploit hierarchical structure when searching for 
information, by approaching the task top-down. We found 
that this was the case when asking questions, as reflected in 
a more efficient solution path when the solution involves a 
higher-level category; for the intervention task, however, the 
advantage for higher levels disappeared, 

Second, our formal analysis allowed us to home in on the 
sources of developmental differences in information search. 
We found developmental trends in efficiency, with older 
participants taking fewer and more efficient steps in their 
search. These results replicate prior research (see Davidson, 
1991a; 1991b; Mosher & Hornsby, 1966), which suggest 
that children are less efficient. This inefficiency is usually 
explained in terms of immature strategic abilities or inability 
to focus on the most relevant pieces of information. Instead, 
we find that children’s inefficiency stems largely from a 
tendency to ask questions or test objects beyond the point at 
which only one hypothesis remains. Specifically, our 
analysis allows us to disentangle the role of children’s 
information search from their stopping rule, suggesting that 
children’s initial search is no less efficient than adults’. 
However, whereas adults stop searching once they obtain 
enough information to solve the task, children continue. 

There are two plausible interpretations for these results, 
not mutually exclusive. First, children might entertain more 
hypotheses than those considered in our model’s hypothesis 
space. For example, they might consider disjunctive 
hypotheses (e.g., a desk OR a high chair will produce the 
effect). This possibility deserves further study, but it is 
notable that children never spontaneously offered such 
hypotheses. Second, children’s stopping rule itself might 
differ from that of adults. In particular, they may seek 
confirming evidence even when it’s not strictly 
“informative,” according to our analysis. This interpretation 
is supported by some children’s comments accompanying 
the selection of additional objects (e.g., “I think I know, but 
let me try just one more question, to be sure”). Although 
these results are surprising in light of previous research 
showing that children of this age tend to be overconfident 
(e.g., Finn & Metcalfe, 2013; Salles et al., 2015), they are 
also consistent with research on children’s decision making, 
which finds that younger children tend to be more 
exhaustive in their search than older children (Davidson, 
1991a; 1991b).  

Looking for confirming evidence is also a strategy that 
could make sense if there’s uncertainty about the hypothesis 
space, the feedback one has received, or the stability of what 

is being learned. As novice learners in a noisy world, 
children might do well to err on the side of obtaining extra 
feedback. Many questions remain open, but our task and 
analyses provide first steps in a more formal approach to 
understanding testing and confirmation throughout the 
lifespan.  
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