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Abstract
Explanation and causation are intimately related. Explanations often appeal to causes, and
causal claims are often answers to implicit or explicit questions about why or how
something occurred. In this chapter we consider what research on explanation can tell us
about causal reasoning. In particular, we review an emerging body of work suggesting that
explanatory considerations - such as the simplicity or scope of a causal hypothesis - can
systematically influence causal inference and learning. We also discuss proposed
distinctions among types of explanations and review their differential effects on causal
reasoning and representation. Finally, we consider the relationship between explanations

and causal mechanisms and raise important questions for future research.



Introduction

A doctor encounters a patient: why does she have a fever and a rash? An engineer
investigates a failure: why did the bridge collapse? A parent wonders about her child: why
did she throw a tantrum? In each of these cases, we seek an explanation for some event -
an explanation that’s likely to appeal to one or more antecedent causes. The doctor might
conclude that a virus caused the symptoms, the engineer that defects in cast iron caused the
bridge collapse, and the parent that the toy’s disappearance caused the tantrum.

Not all explanations are causal, and not all causes are explanatory. Explanations in
mathematics, for example, are typically taken to be non-causal, and many causal factors are
either not explanatory at all, or only explanatory under particular circumstances. (Consider,
for instance, appealing to the big bang as an explanation for today’s inflation rates, or the
presence of oxygen as an explanation for California wildfires.) Nonetheless, causation and
explanation are closely related, with many instances of causal reasoning featuring
explanations and explanatory considerations, and many instances of abductive inference
and explanation appealing to causes and causal considerations. The goal of the present
chapter is to identify some of the connections between explanation and causation, with a
special focus on how the study of explanation can inform our understanding of causal
reasoning.

The chapter is divided into five sections. In the first three, we review an emerging
body of work on the role of explanation in three types of causal reasoning: drawing
inferences about the causes of events, learning novel causal structures, and assigning
causal responsibility. In the fourth section, we consider different kinds of explanations,

including a discussion of whether each kind is properly “causal” and how different kinds of



explanations can differentially influence causal judgments. In the fifth section, we focus on
causal explanations that appeal to mechanisms, and consider the relationship between
explanation, causal claims, and mechanisms. Finally, we conclude with some important

questions for future research.

Causal Inference & Inference to the Best Explanation

Consider a doctor who infers, on the basis of a patient’s symptoms, that the patient
has a particular disease — one known to cause that cluster of symptoms. We'll refer to such
instances of causal reasoning as “causal inference,” and differentiate them from two other
kinds of causal reasoning that we’ll discuss in subsequent sections: causal learning (which
involves learning about novel causes and relationships at the type level) and assigning
causal responsibility (which involves attributing an effect to one or more causes, all of
which could have occurred and contributed to the effect).

How might explanation influence causal inference? One possibility is that people
engage in a process called “inference to the best explanation” (IBE). IBE was introduced
into the philosophical literature by Gilbert Harman in a 1965 paper, but the idea is likely
older, and closely related to what is sometimes called “abductive inference” (Douven, 2011;
Lombrozo, 2012; Peirce, 1955). The basic idea is that one infers that a hypothesis is likely
to be true based on the fact that it best explains the data. To borrow vocabulary from
another influential philosopher of explanation, Peter Lipton, one uses an explanation’s
“loveliness” as a guide to its “likeliness” (Lipton, 2004).

A great deal of work has aimed to characterize how people go about inferring causes

from patterns of evidence (Cheng, 1997; Cheng & Novick, 1990, 1992; Griffiths &



Tenenbaum, 2005; Kelley, 1973; Perales & Shanks, 2003; Shanks & Dickinson, 1988;
Waldmann & Hagmayer, 2001; see Buehner, 2005; Holyoak & Cheng, 2011; Waldmann &
Hagmayer, 2013, for reviews), and this work is summarized in other chapters of this
volume (see the Theories of Causal Cognition section, and the chapter by Meder &
Mayrhofer on diagnostic reasoning, this volume). Thus a question that immediately
presents itself is whether IBE is distinct from the kinds of inference these models typically
involve, such as analyses of covariation or Bayesian inference. For most advocates of IBE,
the answer is “yes”: IBE is a distinct inferential process, where the key commitment is that
explanatory considerations play a role in guiding judgments. These considerations can
include the simplicity, scope, or other “virtues” of the explanatory hypotheses under
consideration.

To provide evidence for IBE as a distinctly explanatory form of inference, it’s thus
important to identify explanatory virtues, and to demonstrate their role in inference. The
most direct evidence of this form comes from research on simplicity (Bonawitz &
Lombrozo, 2012; Lombrozo, 2007; Pacer & Lombrozo, in prep), scope (Khemlani, Sussman,
& Oppenheimer, 2011), and explanatory power (Douven & Schupbach, 2015a, 2015b). We
focus on this research for the remainder of the section.

In one study from Lombrozo (2007), participants learned novel causal structures
describing the relationships between diseases and symptoms on an alien planet. For
example, the conjunction of two particular symptoms - say sore minttels and purple spots
- could be explained by appeal to a single disease that caused both symptoms, Tritchet’s
syndrome, or by appeal to the conjunction of two diseases that each caused one symptom,

Morad’s disease and a Humel infection. Lombrozo set out to test whether participants



would favor the explanation that was simpler in the sense that it invoked a single common
cause over two independent causes, and whether they would do so even when probabilistic
evidence, in the form of disease baserates, favored the more complex explanation.
Lombrozo found that participants’ explanation choices were a function of both simplicity
and probability, with a substantial proportion of participants selecting the simpler
explanation even when it was less likely than the complex alternative. This is consistent
with the idea that an explanation’s “loveliness” - in this case, its simplicity - is used as a
basis for inferring its “likeliness.”

In subsequent work, Bonawitz and Lombrozo (2012) replicated the same basic
pattern of results with 5-year-old children in a structurally parallel task: children observed
a toy generate two effects (a light and a spinning fan), and had to infer whether one block
(which generated both effects) or two blocks (which each generated one effect) fell into the
toy’s activator bin. In this case, probabilistic information was manipulated across
participants by varying the number of blocks of each type and the process by which they
fell into the bin. Interestingly, adults did not show a preference for simplicity above and
beyond probability in this task, while the 5-year-olds did. Bonawitz and Lombrozo suggest
that in the face of probabilistic uncertainty - of the kind that’s generated by a more
complex task like the alien diagnosis problems used in Lombrozo (2007) - adults rely on
explanatory considerations such as simplicity to guide assessments of probability. But
when a task involves a transparent and seemingly deterministic causal system, and when
the numbers involved are small (as was the case for the task developed for young children
in Bonawitz and Lombrozo, 2012), adults may engage in more explicit probabilistic

reasoning, and bypass explanatory considerations altogether. Consistent with this idea,



adults in Lombrozo (2007) also ceased to favor simplicity when they were explicitly told
that the complex hypothesis was most likely to be true.

In more recent work, Pacer and Lombrozo (2015) provide a more precise
characterization of how people assess an explanation’s simplicity. They differentiate two
intuitive metrics for causal explanations, both of which are consistent with prior results:
“count simplicity,” which involves counting the number of causes invoked in an explanation,
and “root simplicity,” which involves counting the number of unexplained causes invoked in
an explanation. For example, suppose that Dr. Count explains a patient’s symptoms by
appeal to pneumonia and sarcoma - two diseases. And that Dr. Root explains the symptoms
by appeal to pneumonia, sarcoma, and HIV, where HIV is a cause (or at least a contributing
factor) for both pneumonia and sarcoma. Dr. Root has invoked more causes than Dr. Count
(three versus two), and so her explanation is less simple according to count simplicity. But
Dr. Root has explained the symptoms by appeal to only one unexplained cause (HIV) as
opposed to Dr. Count’s two (pneumonia and sarcoma), so her explanation is simpler
according to root simplicity. Extending the basic method developed by Lombrozo (2007),
Pacer and Lombrozo found strong evidence that people favor explanations with low root
simplicity (above and beyond what’s warranted on the basis of the frequency information
with which they were provided), but no evidence that people are sensitive to count
simplicity. By using appropriate causal structure, they were able to rule out alternative
explanations for these results (e.g., that people prefer explanations that involve intervening
variables).

These findings suggest that in drawing causal inferences, people do not simply

engage in probabilistic inference on the basis of frequency information. In addition to



frequency information, they use explanatory considerations (in this case, low root
simplicity) to guide their judgments, at least in the face of probabilistic uncertainty. The
findings therefore suggest that IBE plays a role in inferences concerning causal events. But
is this effect restricted to simplicity, or do other explanatory considerations play a role as
well? Research to date supports a role for two additional factors: narrow latent scope and
explanatory power.

An explanation’s “latent scope” refers to the number of unverified effects that the
explanation predicts. For example, an observed symptom could be explained by appeal to a
disease that predicts that single symptom, or by appeal to a disease that additionally
predicts an effect that has not yet been tested for and is hence unobserved (e.g., whether
the person has low blood levels of some mineral). In this case, the former explanation has
narrower latent scope. Khemlani, Sussman, and Oppenheimer (2011) found that people
favor explanations with narrow latent scope, even if the two diseases are equally prevalent.
Importantly, they also find that latent scope affects probability estimates: explanations
with narrow latent scope are judged more likely than those with broader latent scope (see
also Johnson, Johnston, Toig, & Keil, 2014, for evidence that explanatory scope informs
causal strength inferences, and Johnston, Johnson, Koven, & Keil, 2015, for evidence of
latent scope bias in children). Thus latent scope appears to be among the cues to
explanatory “loveliness” that affect the perceived “likeliness” of explanatory hypotheses.

Finally, recent work by Douven and Schupbach (2015a, 2015b) provides further
evidence of a role for explanatory considerations in inference, with hints that the relevant
consideration is “explanatory power.” Employing a quite different paradigm, Douven and

Schupbach demonstrate that people’s explanatory judgments better predict their estimates



of posterior probability than do objective probabilities on their own. In a study reported in
Douven and Schupbach (2015a), participants observed ten balls successively drawn from
one of two urns, which was selected by a coin flip. One urn contained 30 black balls and 10
white balls, and the other contained 15 black balls and 25 white ones. After each draw,
participants were asked to consider the evidence so far, and to rate the “explanatory
goodness” for each of two hypotheses: the hypothesis that the balls were drawn from the
30/10 urn, or the hypothesis that the balls were drawn from the 15/25 urn. Participants
were also asked to estimate a posterior probability for each hypothesis after each draw. In
a series of models, Douven and Schupbach tested whether people’s judgments of the
explanatory “goodness” of each hypothesis improved model predictions of their subjective
posterior probabilities, above and beyond the objective posteriors calculated on the basis
of the data presented to each participant. They found that models incorporating these
explanatory judgments outperformed alternatives, even when appropriately penalized for
using additional predictors.

Douven and Schupbach’s (2015a) results suggest that explanatory considerations
do inform assessments of probability, and that these considerations diverge from posterior
probability. However, the findings don’t pinpoint the nature of the explanatory
considerations themselves. On what basis were participants judging one hypothesis more
or less explanatory than the other? Additional analyses of these data, reported in Douven
and Schupbach (2015b), provide some hints: models that took into account some measure
of “explanatory power” - computed on the basis of the objective probabilities —
outperformed the basic model that only considered posteriors. The best-performing model

employed a measure based on Good (1960) that roughly tracks confirmation: it takes the



log of the ratio of the probability of the data given the hypothesis to the probability of the
data. In other work, Schupbach (2011) finds evidence that people’s judgments of
explanation “goodness” are related to another measure of explanatory power, proposed by
Schupbach and Sprenger (2011), which is also related to Bayesian measures of
confirmation.

These findings suggest that explanatory considerations - in the form of root
simplicity, latent scope, and explanatory power - inform causal inference, and in so doing
reveal something potentially surprising: that while people’s responses to evidence are
systematic, they don’t (always) lead to causal inferences that track the posterior
probabilities of each causal hypothesis. This not only supports a role for explanatory
considerations in causal inference, but also challenges the idea that identifying causes to
explain effects is essentially a matter of conditionalizing on the effects to infer the most
likely cause. Further challenging this idea, Pacer, Williams, Chen, Lombrozo, and Griffiths
(2013) compare judgments of explanatory goodness from human participants to those
generated by four distinct computational models of explanation in causal Bayesian
networks, and find that models that compute measures of evidence or information
considerably outperform those that compute more direct measures of (posterior)
probability.

In sum, there’s good evidence that people engage in a process like IBE when
drawing inferences about causal events: they use explanatory considerations to guide their
assessments of which causes account for observed effects, and of how likely candidate
hypotheses are to be true. The most direct evidence to date concerns root simplicity, latent

scope, and explanatory power, but there’s indirect evidence that other explanatory



considerations, such as coherence, completeness, and manifest scope, may play a similar
role (Pennington & Hastie, 1988; Read & Marcus-Newhall, 1993; Preston & Epley, 2005;
Thagard, 1989; Williams & Lombrozo, 2010).

Before concluding this section on IBE in causal inference, it's worth considering the
normative implications of this work. It’s typically assumed that Bayesian updating provides
the normatively correct procedure for revising belief in causal hypotheses in light of the
evidence. Do the findings reported in this section describe a true departure from Bayesian
inference, and therefore a systematic source of error in human judgment? This is certainly
one possibility. For example, it could be that IBE describes an imperfect algorithm by which
people approximate Bayesian inference. If this is the case, it becomes an interesting project
to spell out when and why explanatory considerations ever succeed in approximating more
direct probabilistic inference.

There are other possibilities, however. In particular, an appropriately specified
Bayesian model could potentially account for these results. In fact, some have argued that
IBE-like inference could simply fall out of hierarchical Bayesian inference with suitably
assigned priors and likelihoods (Henderson, 2013), in which case there could be a justified,
Bayesian account of this behavior. It could also be that the Bayesian models implicit in the
comparisons between people’s judgments and posterior probabilities fail to describe the
inference that people are actually making. In their chapter in this volume on diagnostic
reasoning for example, Meder and Mayrhofer (this volume) make the important point that
there can be more than one “Bayesian” model for a given inference, and in fact find
different patterns of inference for models that make different assumptions when it comes

to elemental diagnostic reasoning: inferring the value of a single binary cause from a single
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binary effect, which has clear parallels to the cases considered here. In particular, they
argue for a model that takes into account uncertainty in causal structures over one that
simply computes the empirical conditional probability of a cause given an effect. Similarly,
it could be that the “departures” from Bayesian updating observed here reflect the
consequences of a Bayesian inference that involves more than a straight calculation of
posteriors.

Finally, some argue that IBE corresponds to a distinct but normatively justifiable
alternative to Bayesianism (e.g., Douven & Schupbach, 2015). In particular, while Bayesian
inference may be the best approach for minimizing expected inaccuracy in the long run, it
could be that a process like IBE dominates Bayesian inference when the goal is, say, to get
things mostly right in the short term, or to achieve some other aim (Douven, 2013). It could
also be that explanations trade off other considerations against accuracy, such as the ease
with which the explanation can be communicated, remembered, or used in subsequent

processing. These are all important possibilities to explore in future research.

Causal Learning & The Process of Explaining

Consider a doctor who, when confronted with a recurring pattern of symptoms,
posits a previously undocumented disease, or a previously unknown link between some
pathogen and those symptoms. In each case, the inference involves a change in the doctor’s
beliefs about the causal structure of the world, not only about the particular patient’s
illness. This kind of inference, which we’ll refer to as causal model learning, differs from the
kinds of causal inferences considered in the preceding section in that the learner posits a

novel cause or causal relation, not (only) a new token of a known type.
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Just as explanatory considerations can influence causal inference, it’s likely that a
process like IBE can guide causal model learning. In fact, “Occam’s Razor,” the classic
admonition against positing unnecessary types of entities (Baker, 2013), is typically
formulated and invoked in the context of positing novel types, not tokens of known types.
However, research to date has not (to our knowledge) directly explored IBE in the context
of causal model learning. Doing so would require assessing whether novel causes or causal
relations are more likely to be inferred when they provide better explanations.

What we do know is that engaging in explanation - the process - can affect the
course of causal learning. In particular, a handful of studies with preschool-aged children
suggest that being prompted to explain, even without feedback on the content or quality of
explanations, can promote understanding of number conservation (Siegler, 1995) and of
physical phenomena (e.g., a balance beam, Pine & Siegler, 2003), and recruit causal beliefs
that aren’t invoked spontaneously to guide predictions (Amsterlaw & Wellman, 2006;
Bartsch & Wellman, 1989; Legare, Wellman, & Gelman, 2009). Prompts to explain can also
accelerate children’s understanding of false belief (Wellman & Lagattuta, 2004; Amsterlaw
& Wellman, 2006; see Wellman & Liu, 2007 and Wellman, 2011 for reviews), which
requires a revision from one causal model of behavior to a more complex model involving
an unobserved variable (belief) and a causal link between beliefs and behavior (e.g.,
Goodman et al., 2006). Finally, there’s evidence that prompting children to explain can lead
them to preferentially learn about and remember causal mechanisms over causally-
irrelevant perceptual details (Legare & Lombrozo, 2014), and that prompting children to
explain makes them more likely to generalize internal parts and category membership

from some objects to others on the basis of shared causal affordances as opposed to
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perceptual similarity (Walker, Lombrozo, Legare, & Gopnik, 2014; see also Muentener &
Schulz, this volume, for more on children’s causal learning).

To better understand the effects of explanation on children’s causal learning, Walker,
Lombrozo, Williams, Rafferty, and Gopnik (2015) set out to isolate effects of explanation on
two key factors in causal learning: evidence and prior beliefs. Walker et al. used the classic
“blicket detector” paradigm (Gopnik & Sobel, 2000), in which children observe blocks
placed on a machine, where some of the blocks make the machine play music. Children
have to learn which blocks activate the machine, which can involve positing a novel kind
corresponding to a subset of blocks, and/or positing a novel causal relationship between
those blocks (or some of their features) and the machine’s activation.

In Walker et al.’s studies, 5-year-old children observed eight blocks successively
placed on the machine, where four activated the machine and four did not. Crucially, half
the children were prompted to explain after each observation (“Why did [didn’t] this block
make my machine play music?”), and the remaining children, in the control condition, were
asked to report the outcome (“What happened to my machine when I put this block on it?
Did it play music?”). This control task was intended to match the explanation condition in
eliciting a verbal response and drawing attention to the relaionship between each block
and the machine, but without requiring that the child explain.

Across studies, Walker et al. varied the properties of the blocks to investigate
whether prompting children to explain made them more likely to favor causal hypotheses
that were more consistent with the data (i.e., one hypothesis accounted for 100% of
observations and the other for 75%) and/or more consistent with prior beliefs (i.e., one

hypothesis involved heavier blocks activating the machine, which matched children’s initial
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asumptions; the other involved blocks of a given color activating the machine). When
competing causal hypotheses were matched in terms of prior beliefs but varied in the
evidence they accounted for, children who were prompted to explain were significantly
more likely than controls to favor the hypothesis with stronger evidence. And when
competing causal hypotheses were matched in terms of evidence but varied in their
consistency with prior beliefs, children who were prompted to explain were significantly
more likely than controls to favor the hypothesis with a higher prior. In other words,
explaining made children more responsive to both crucial ingredients of causal learning:
evidence and prior beliefs.

In their final study, Walker et al. considered a case in which evidence and prior
beliefs came into conflict: a hypothesis that accounted for 100% of the evidence (“blue
blocks activate the machine”) was pitted against a hypothesis favored by prior beliefs (“big
blocks activate the machine”), but that only accounted for 75% of the evidence. In this case,
children who were prompted to explain were significantly more likely than controls to go
with prior beliefs, guessing that a novel big block rather than a novel blue block would
activate the machine. This pattern of responses was compared against the predictions of a
Bayesian model that incorporated children’s own priors and likelihoods as estimated from
an independent task. The results suggested that children who were prompted to explain
were less likely than children in the control condition to conform to Bayesian inference.
This result may seem surprising in light of explainers’ greater sensitivity to both evidence
and prior beliefs, which suggests that explaining results in “better” performance. However,

it’s less surprising in light of the findings reported in the previous section, which
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consistently point to a divergence between explanation-based judgments and assessments
of posterior probability.

While the evidence summarized thus far is restricted to preschool-aged children, it’s
likely that similar processes operate in older children and adults. For instance, Kuhn and
Katz (2009) had fourth-grade children engage in a causal learning task that involved
identifying the causes of earthquakes by observing evidence. The children subsequently
participated in a structurally similar causal learning task involving an ocean voyage, where
half were instructed to explain the basis for each prediction that they made, and those in a
control group were not. When the same students completed the earthquake task in a post-
test, those who had explained generated a smaller number of evidence-based inferences;
instead, they seemed to rely more heavily on their (mistaken) prior beliefs, in line with the
findings from Walker et al. (2015). In a classic study with 8th-grade students, Chi, De Leeuw,
Chiu, and LaVancher (1994) prompted students to “self-explain” as they read a passage
about the circulatory system, with students in the control condition instead prompted to
read the text twice. Students who explained were significantly more likely to acquire an
accurate causal model of the circulatory system, in part, they suggest, because explaining
“involved the integration of new information into existing knowledge” - that is, the
coordination of evidence with prior beliefs. Finally, evidence with adults investigating the
effects of explanation in categorization tasks mirror the findings from Walker et al. (2015),
with participants who explain both more responsive to evidence (Williams & Lombrozo,
2010) and more likely to recruit prior beliefs (Williams & Lombrozo, 2013).

Why does the process of explaining affect causal learning? One possibility is that

explaining simply leads to greater attention or engagement. This is unlikely for a variety of

15



reasons. Prior work has found that while explaining leads to some improvements in
performance, it also generates systematic impairments. In one study, children prompted to
explain were significantly less likely than controls to remember the color of a gear in a gear
toy (Legare & Lombrozo, 2014); in another, they were significantly less likely to remember
which sticker was placed on a block (Walker et al., 2014). Research with adults has also
found that a prompt to explain can slow learning and increase error rates in a category
learning task (Williams, Lombrozo, & Rehder, 2013). Moreover, the findings from the final
study of Walker et al. (2015) suggest that prompting children to explain makes them look
less, not more, like ideal Bayesian learners. Far from generating a global boost in
performance, explanation seems to generate highly selective benefits.

A second possibility is that explaining plays a motivational role that’s specifically
tied to causal learning. In a provocatively-titled paper (“Explanation as orgasm and the
drive for causal understanding”), Gopnik (1998, 2000) argues that the phenomenological
satisfaction that accompanies a good explanation is part of what motivates us to learn
about the causal structure of the world. Prompting learners to explain could potentially
ramp up this motivational process, directing children and adults to causal relationships
over causally-irrelevant details (consistent with Legare & Lombrozo, 2014; Walker et al.,
2014). Explaining could also affect the course of causal inquiry itself, with effects on which
data are acquired and how they inform beliefs (see Legare, 2012, for preliminary evidence
that explanation guides exploration).

Finally (and not mutually exclusively), it could be that effects of explanation on
learning are effectively a consequence of IBE - that is, that in the course of explaining,

children generate explanatory hypotheses, and those explanatory hypotheses are evaluated
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with “loveliness” as a proxy for “likeliness.” For instance, in Walker et al. (2015), children
may have favored the hypothesis that accounted for more evidence because it had greater
scope or coverage, and the hypothesis consistent with prior knowledge because it provided
a specification of mechanism or greater coherence. We suspect that this is mostly, but only
mostly, correct. Some studies have found that children who are prompted to explain
outperform those in control conditions even when they fail to generate the right explanation,
or any explanation at all (Walker et al., 2014). This suggests the existence of some effects of
engaging in explanation that aren’t entirely reducible to the effects of having generated any
particular explanation.

While such findings are puzzling on a classic interpretation of IBE, they can
potentially be accommodated with a modified and augmented version (Lombrozo, 2012;
Wilkenfeld & Lombrozo, 2015). Wilkenfeld and Lombrozo (2015) argue for what they call
“Explaining for the Best Inference,” an inferential practice that differs from IBE in focusing
on the process of explaining as opposed to candidate explanations themselves. While IBE
and EBI are likely to go hand in hand, there could be cases in which the explanatory
processes that generate the best inferences aren’t identical with those promoted by
possessing the best explanations, and EBI allows for this possibility.

In sum, there’s good evidence that the process of engaging in explanation influences
causal learning. This is potentially driven by effects of explanation on the evaluation of both
evidence and prior beliefs (Walker et al.,, 2015). One possibility is that by engaging in
explanation, learners are more likely to favor hypotheses that offer “lovely” explanations
(Lombrozo, 2012), and to engage in cognitive processes that affect learning even when a

lovely or accurate explanation isn’t acquired (Wilkenfeld & Lombrozo, 2015). It’s not
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entirely clear, however, whether and when these effects of explanation lead to “better”
causal learning. The findings from Amsterlaw & Wellman (2006) and Chi et al. (1994)
suggest that effects can be positive, accelerating conceptual development and learning.
Other findings are more mixed (e.g., Kuhn & Katz, 2009), with the modeling result from
Walker et al. (2015) suggesting that prompting children to explain makes them integrate
evidence and prior beliefs in a manner that corresponds less closely to Bayesian inference.
Better delineating the contours of explanation’s beneficial and detrimental effects will be
an important step for future research. It will also be important to investigate how people’s
tendency to engage in explanation spontaneously corresponds to these effects. That is, are
the conditions under which explaining is beneficial also the conditions under which people

tend to spontaneously explain?

Assigning Causal Responsibility

The previous sections considered two kinds of causal reasoning, one involving novel
causal structures and the other causal events generated by known structures. Another
important class of causal judgments involves the assignment of causal responsibility: to
which cause(s) do we attribute a given effect? For instance, a doctor might attribute her
patient’s disease to his weak immune system or to a cold virus, when both are in fact
present and play a causal role.

Causal attribution has received a great deal of attention within social psychology,
with the classic conundrum concerning the attribution of some behavior to a person (“she’s
so clumsy!”) versus a situation (“the staircase is so slippery!”) (see Fiske & Taylor, 2013,

Kelley & Michela, 1980, and Malle, 2004, for reviews). While this research is often framed
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in terms of causation, it’s natural to regard attribution in terms of explanation, with
attributions corresponding to an answer to the question of why some event occurred
(“Why did Ava slip?”). In his classic “ANOVA model,” Kelley (1967, 1973) proposed that
people effectively carry out an analysis of covariation between the behavior and a number
of internal and external factors, such as the person, stimulus, and situation. For example, to
explain why Ava slipped on the staircase yesterday, one would consider how this behavior
fares along the dimensions of consensus (did other people slip?), the distinctiveness of the
stimulus (did she slip only on that staircase?), and consistency across situations (does she
usually slip, or was it the only time she did so0?). Subsequent work, however, has identified
a variety of additional factors that influence people’s attributions (e.g., Ahn, Kalish, Medin,
& Gelman, 1995; Forsterling, 1992; Hewstone & Jaspars, 1987; McArthur, 1972), and some
have challenged the basic dichotomy on which the person-versus-situation analysis is
based (Malle, 1999, 2004; Malle, Knobe, O’Laughlin, Pearce, & Nelson, 2000). We direct
readers interested in social attribution to the chapter by Hilton (this volume).
Assignments of causal responsibility also arise in the context of what’s sometimes
called “causal selection”: the problem of deciding which cause or causes in a chain or other
causal structure best explain or account for some effect. Such judgments are especially
relevant in moral and legal contexts, where they are closely tied to attributions of blame.
For example, suppose that someone steps on a log, which pushes a boulder onto a picnic
blanket, crushing a chocolate pie. The person, the log, and the boulder all played a causal
role in the pie’s destruction, but various factors might influence our assignment of causal
responsibility, including the location of each factor in the chain, whether and by how much

it increased the probability of the outcome, and whether the person intended and foresaw
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the culinary catastrophe (see, e.g., Hart & Honoré, 1985; Hilton, McClure, & Sutton, 2009;
Lagnado & Channon, 2008; McClure, Hilton, & Sutton, 2007; Spellman, 1997). The chapter
by Lagnado and Gerstenberg on moral and legal reasoning (this volume) explores these
issues in detail; also relevant is the chapter by Danks on singular causation (this volume).

While research has not (to our knowledge) investigated whether explanatory
considerations such as simplicity and explanatory power influence judgments of causal
responsibility, ideas from the philosophy and psychology of explanation can usefully
inform research on this topic. For example, scholars of explanation often emphasize the
ways in which an explanation request is underspecified by a why-question itself. When we
ask “why did Ava slip on the stairs?”, the appropriate response is quite different if we're
trying to get at why Ava slipped (as opposed to Boris) than if we’re trying to get at why Ava
slipped on the stairs (as opposed to the landing). These questions involve a shift in what
van Fraassen (1980) calls a “contrast class,” i.e. the set of alternatives to the target event
that the explanation should differentiate from the target via some appropriate relation (see
also Cheng & Novick, 1991).

McGill (1989) showed in a series of studies that a number of previously established
effects in causal attribution - effects of perspective (actor vs. observer; Jones & Nisbett,
1971), covariation information (consensus and distinctiveness; Kelley, 1967), and the
valence of the behavior being explained (positive vs. negative; Weiner, 1985) - are related
to shifts in the contrast class. Specifically, by manipulating the contrast class adopted by
participants, McGill was able to eliminate the actor-observer asymmetry, interfere with the

roles of consensus and distinctiveness information, and counteract self-serving attributions
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of positive versus negative performance. These findings underscore the close relationship
between attribution and explanation.

Focusing on explanation is also helpful in bringing to the foreground questions of
causal relevance as distinct from probability. In a 1996 paper, Hilton presented a set of
studies designed to clearly differentiate these notions. In one study, Hilton showed that
contextual information can influence the perceived “goodness” and relevance of an
explanation without necessarily affecting its probability. For example, participants were
asked to rate the following explanation of why a watch-face broke (an example adapted
from Einhorn & Hogarth, 1986): “the watch broke because the hammer hit it.” This
explanation was rated as fairly good, relevant, and likely to be true; however, after learning
that the hammer hit the watch during a routine testing procedure at a watch factory,
participants’ ratings of explanation quality and relevance dropped. In contrast, ratings of
probability remained high, suggesting that causal relevance and the probability of an
explanation can diverge, and that these two factors differ in their susceptibility to this
contextual manipulation. It’s possible that these effects were generated by a shift in
contrast, from “why did this watch break now (as opposed to not breaking now)?” to “why
did this watch break (as opposed to some other watch breaking)?”

More recently, Chin-Parker & Bradner (2010) showed that effects of background
knowledge and implicit contrasts extend to the generation of explanations. They
manipulated participants’ background assumptions by presenting a sequence of causal
events that either did or did not seem to unfold towards a particular functional outcome
(when it did, the sequence appeared to represent a closed-loop system functioning in a self-

sustaining manner). Participants’ explanations of an ambiguous observation at the end of
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the sequence tended to invoke a failure of a system to perform its function in the former
case, but featured proximal causes in the latter case. (In contrast to prior research, context
did not affect explanation evaluation in this design).

Taken together, these studies offer another set of examples of how explanatory
considerations (in this case, the contextually-determined contrast class) can influence
causal judgments, and suggest that ascriptions of causal responsibility may vary depending
on how they are framed: in terms of causal relevance and explanation, or in terms of
probability and truth. It’s also possible that considerations such as simplicity and scope
play a role in assigning causal responsibility, above and beyond their roles in causal

inference and learning. These are interesting questions for future research.

The Varieties of Causal Explanation

There’s no agreed-upon taxonomy for explanations; in fact, even the distinction
between causal and non-causal explanation generates contested cases. For instance,
consider an example from Putnam (1975). A rigid board has a round hole and a square hole.
A peg with a square cross-section passes through the square hole, but not the round hole.
Why? Putnam suggests that this can be explained by appeal to the geometry of the rigid
objects (which is not causal), without appeal to lower-level physical phenomena (which are
presumably causal). Is this a case of non-causal explanation? It depends on whom you ask.

One taxonomy that has proven especially fruitful in the psychological study of
explanation has roots in Aristotle’s four causes (efficient, material, final, and formal), which
are sometimes characterized not as causes per se, but in terms of explanation - as distinct

answers to a “why?” question (Falcon, 2015). Efficient causes, which identify “the primary
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source of the change or rest” (e.g., a carpenter who makes a table), seem like the most
canonically causal. Material causes, which specify “that out of which” something is made
(e.g., wood for a table), are not causal in a narrow sense (for instance, we wouldn’t say that
the wood causes or is a cause of the table), but they nonetheless play a clear causal role in
the production of an object. Final and formal causes are less clearly causal; but, as we
consider below, there are ways in which each could be understood causally, as well.

First, consider final causes, which offer “that for the sake of which a thing is done.”
Final cause explanations (or perhaps more accurately, their contemporary counterparts)
are also known as teleological or functional explanations, as they offer a goal or a function.
For instance, we might explain the detour to the café by appeal to a goal (getting coffee), or
the blade’s sharpness by appeal to its function (slicing vegetables). On the face of it, these
explanations defy the direction of causal influence: they explain a current event (the
detour) or property (the sharpness) by appeal to something that occurs only later (the
coffee-acquisition or the vegetable-slicing). Nonetheless, some philosophers have argued
that teleological explanations can be understood causally (e.g., Wright, 1976), and there’s
evidence that adults (Lombrozo & Carey, 2006) and children (Kelemen & DiYanni, 2005)
treat them causally, as well (see also Chaigneau, Barsalou, & Sloman, 2004, and Lombrozo
& Rehder, 2012 for more general investigations of the causal structure of functions).

How can teleological explanations be causal? On Wright's view, teleological
explanations don’t explain the present by appeal to the future - rather, the appeal to an
unrealized goal or function is a kind of shorthand for a complex causal process that brought
about (and hence preceded) what’s being explained. In cases of intentional action, the

function or goal could be a shorthand for the corresponding intention that came first: the

23



detour to the café was caused by a preceding intention to get coffee, and the blade’s
sharpness was caused by the designer’s antecedent intention to create a tool for vegetable-
slicing. Other cases, however, can be more complex. For instance, we might explain this
zebra’s stripes by appeal to their biological function (camouflage) because its ancestors had
stripes that produced effective camouflage, and in part for that reason, stripes were
increased or maintained in the population. If past zebra stripes didn’t produce camouflage,
then this zebra wouldn’t have stripes (indeed, this zebra might not exist at all). In this case,
the function can be explanatory because it was produced by “a causal process sensitive to
the consequences of changes it produces” (Lombrozo & Carey, 2006; Wright, 1976), even in
the absence of a preceding intention to realize the function.

Lombrozo and Carey (2006) tested these ideas as a descriptive account of the
conditions under which adults accept teleological explanations. In one study, they
presented participants with causal stories in which a functional property did or did not
satisfy Wright's conditions. For example, participants learned about genetically-engineered
gophers that eat weeds, and whose pointy claws damage the roots of weeds as they dig,
making them popular among farmers. The causal role of “damaging roots” in bringing
about the pointy claws varied across conditions, from no role (the genetic engineer
accidentally introduced a gene sequence that resulted in gophers with pointy claws), to a
causal role stemming from an intention to damage roots (the genetic engineer intended to
help eliminate weeds, and to that end engineered pointy claws), to a causal role without an
intention to damage roots (the genetic engineer didn’t realize that pointy claws damaged
weed roots, but did notice that the pointy claws were popular and decided to create all of

his gophers with pointy claws). Participants then rated the acceptability and quality of
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teleological (and other) explanations. For the vignette involving genetically-engineered
gophers, they were asked why the gophers had pointy claws, and rated “Because the pointy
claws damage weed roots” as a response.

In this and subsequent studies, Lombrozo and Carey (2006) found that teleological
explanations are understood causally in the sense that participants only accepted
teleological explanations when the function or goal invoked in the explanation played an
appropriate causal role in bringing about what was being explained. More precisely, this
causal requirement was necessary for teleological explanations to be accepted, but not
sufficient. In the examples above, teleological explanations were accepted at high levels
when the function was intended, at moderate levels when the function played a non-
intentional causal role, and at low levels when the function played no causal role at all.
Lombrozo and Carey suggest (and provide evidence) that in addition to satisfying certain
causal requirements, teleological explanations might call for the existence of a general
pattern that makes the function predictively useful.

Kelemen and DiYanni (2005) conducted a study with elementary school children (6-
7 and 9-10 year old) investigating the relationship between their acceptance and
generation of teleological explanations for natural phenomena on the one hand, and their
causal commitments concerning their origins on the other hand - specifically, whether they
believed that an intentional designer of some kind (“someone or something”) made them or
they “just happened.” The tendency to endorse and generate teleological explanations of
natural events, non-living natural objects, and animals was significantly correlated with
belief in the existence of an intentional creator of some kind, be it God, a human, or an

unspecified force or agent. While these findings don’t provide direct support for the idea
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that teleological explanations are grounded in a preceding intention to produce the specific
function in question, the link between teleological explanations and intentional design
more generally is consistent with the idea that teleological explanations involve some basic
causal commitments. Along the same lines, Kelemen, Rottman, and Seston (2013) found
that adults (including professional scientists) who believe in God or “Gaia” are more likely
to accept scientifically-unwarranted teleological explanations (see also ojalehto, Waxman,
& Medin, 2013, for a relevant discussion). Thus, the findings to date suggest that
teleological explanations are understood causally by both adults and children.

What about formal explanations? Within Aristotle’s framework, a formal
explanation offers “the form” of something or “the account of what-it-is-to-be.” Within
psychology, what little work there is on formal explanation has focused on explanations
that appeal to category membership. For example, Prasada and Dillingham (2006) define
formal explanations as stating that tokens of a type have certain properties because they
are the kinds of things they are (i.e. tokens of the respective type): we can say that Zach
diagnoses ailments because he is a doctor, or that a particular object is sharp because it is a
knife.

In their original paper and in subsequent work, Prasada and Dillingham (2006,
2009) argue that formal explanations are not causal, but instead explanatory by virtue of a
part-whole relationship. They show that only properties that are considered to be aspects
of the kind support formal explanations, in contrast to “statistical” properties that are
merely reliably associated with the kind. For example, people accepted a formal
explanation of why something has four legs by reference to its category (“because it’s a

dog”), and also accepted the claim that “having four legs” is one aspect of being a dog. In
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contrast, participants rejected formal explanations such as “that (pointing to a barn) is red
because it's a barn,” and also denied that being red is one aspect of being a barn (even
though most barns are red). Prasada and Dillingham (2009) argue that the relationship
underlying such formal explanation is constitutive (not causal): aspects are connected to
kinds via a part-whole relationship, and such relationships are explanatory because the
“existence of a whole presupposes the existence of its parts, and thus the existence of a part
is rendered intelligible by identifying the whole of which it is a part” (p. 421).

Prasada and Dillingham offer two additional pieces of evidence for the proposal that
formal explanations are constitutive, and not causal. First, they demonstrate the
explanatory potential of the part-whole relationship by showing that when this
relationship is made explicit, even statistical features can support formal explanations. For
example, we can explain: “Why is that (pointing to a barn) red? Because it is a red barn,”
where being red is understood as part of being a red barn (Prasada & Dillingham, 2009).
This explanation isn’t great, but neither is it tautological: it identifies the source of the
redness in something about the red barn as opposed, for instance, to the light that happens
to be shining on it (see also Cimpian & Salomon, 2014, on “inherent” explanations). Less
convincingly, they attempt to differentiate formal explanations from causal-essentialist
explanations. On causal-essentialist accounts, a category’s essence is viewed as the cause of
the category members’ properties (Gelman, 2003; Gelman & Hirschfeld, 1999; Medin &
Ortony, 1989), which could ground formal explanations in a causal relationship. To test this,
Prasada and Dillingham had participants evaluate explanations such as: “Why does that
(pointing to a dog) have four legs? Because it has the essence of a dog which causes it to

have four legs” (Prasada & Dillingham, 2006). While there was a trend for formal

27



explanations to be rated more highly than causal-essentialist explanations for properties
that were taken to be aspects of a given kind, the results were inconclusive. As Prasada and
Dillingham acknowledge, the wording of the causal-essentialist explanations was awkward,
which could partially account for their middling acceptance. It thus remains a possibility
that at least some formal explanations are understood causally, as pointers to some
category-associated essence or causal factor responsible for the properties being explained.

One reason it’s valuable to recognize the diversity of explanations is because
different kinds of explanations lead to systematically different patterns of causal judgment.
For example, Lombrozo (2009) investigated the relationship between different kinds of
causal explanations and the relative importance of features in classification (see also Ahn,
1998). Participants learned about novel artifacts and organisms with three causally-related
features. To illustrate: one item involved “holings,” a type of flower with brom compounds
in its stem, which makes it bend over as it grows, which means its pollen can be spread to
other flowers by wandering field mice. Participants were asked a why-question about the
middle feature (e.g., “Why do holings typically bend over?”), which was ambiguous as a
request for a mechanistic explanation (e.g., “Because of the brom compounds”) or a
teleological explanation (e.g., “In order to spread their pollen”). Participants provided an
explanation and were subsequently asked to decide whether novel flowers were holings,
where some shared the mechanistic feature (brom compounds) and some shared the
functional feature (bending over). Lombrozo found that participants who provided
functional explanations in response to the ambiguous why-question were significantly
more likely than those who did not to privilege the functional feature relative to the

mechanistic feature when it came to classification. Similarly, a follow-up study found that
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experimentally prompting participants to generate a particular explanation type by
disambiguating the why-question (“In other words, what purpose might bending over
serve?”) had the same effect (see also Lombrozo & Rehder, 2012 for additional evidence
about the relationship between functions and kind classification).

Additional studies suggest that effects of mechanistic versus functional explanations
extend beyond judgments of category membership. Lombrozo and Gwynne (2014)
employed a method similar to Lombrozo (2009), presenting participants with causal chains
consisting of three elements, such as a certain gene that causes a speckled pattern in a plant,
which attracts butterflies that play a role in pollination. Participants explained the middle
feature (the speckled pattern) and generalized a number of aspects of that feature (e.g., its
density, contrast, and color) to novel entities that shared either a causal or a functional
feature with the original. Lombrozo and Gwynne found that explaining a property
functionally (versus mechanistically) promoted the corresponding type of generalization.

Vasilyeva and Coley (2013) demonstrated a similar link between explanation and
generalization in an open-ended task. Participants learned about plants and animals
possessing novel but informative properties (e.g., ducks have parasite X [or X-cells]) and
generated hypotheses about which other organisms might share the property. In the
course of generating these hypotheses, participants spontaneously produced formal, causal,
and teleological explanations in a manner consistent with the property they reasoned
about. Most importantly, the type of explanation predicted the type of generalization: for
example, people were most likely to generalize properties to entities related via causal
interactions (e.g., plants and insects that ducks eat, or things that eat ducks) after

generating causal explanations (e.g., they got it from their food). In a separate set of studies,
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Vasilyeva and Coley (in prep.) ruled out an alternative account based exclusively on direct
effects of generalized properties on generalizations.

Beyond highlighting some causal relationships over others, different kinds of
explanations could change the way participants represent and reason about causal
structure. Indeed, findings from Lombrozo (2010) suggest this is the case. In a series of
studies, Lombrozo presented participants with causal structures drawn from the
philosophical literature and intended to disambiguate two accounts of causation: those
based on some kind of dependence relationship (see Le Pelley, Over, this volume) and those
based on some kind of transference (see Wolff, this volume). According to one version of
the former view, C is a cause of E if it’s the case that had C not occurred, E would not have
occurred. In other words, E depends upon C in the appropriate way, in this case
counterfactually. According to one version of transference views, C is a cause of E if there
was a physical connection between C and E - some continuous mechanism or conserved
physical quantity, such as momentum.

While dependence and transference often go hand in hand, they can come apart in
cases of “double prevention” and “overdetermination.” Lombrozo presented participants
with such cases and found that judgments were more closely aligned with dependence
views than transference views when the causal structures were directed towards a
function or goal, and therefore supported a teleological explanation. Lombrozo (2010)
explains this result, in part, by appeal to the idea of equifinality: when a process is goal-
directed, the end may be achieved despite variations in the means. To borrow Williams
James’s famous example, Romeo will find his way to Juliet whatever obstacle is placed in

his path (James, 1890). He might scale a fence or wade through a river, but the end -
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reaching Juliet - will remain the same. When participants reason about a structure in
teleological or goal-directed terms, they may similarly represent it as means- or
mechanism-invariant, and therefore focus on dependence relationships irrespective of the
specific transference that happened to obtain.

In sum, pluralism has long been recognized as a feature of explanation, with
Aristotle’s taxonomy providing a useful starting point for charting variation in explanations
(although it is by no means the only taxonomy of explanation; see, for example, Cimpian &
Salomon, 2014, on inherent versus extrinsic explanations). We’ve reviewed evidence that
teleological explanations are causal explanations, but that they are nonetheless treated
differently from mechanistic explanations, which do not appeal to functions or goals. The
evidence concerning formal explanations is less conclusive, but points to a viable
alternative to a causal interpretation, with formal explanation instead depending on
constitutive “part-whole” relations.

One reason it’s valuable to recognize explanatory pluralism is because it could
provide a useful roadmap for thinking about pluralism when it comes to causation and
causal relations. In fact, as we’ve seen, different kinds of explanations do lead to systematic
differences in classification and inference, with evidence that causal relationships
themselves may be represented differently under different “explanatory modes.” In the
following section, we take a closer look at mechanistic explanations and their relationship

to causation and mechanisms.

Explanation and Causal Mechanisms
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The “mechanistic explanations” considered in the previous section concerned the
identification of one or more causes that preceded some effect. Often, however, causal
explanations don’t simply identify causes, but instead aim to articulate how the cause
brought about the effect. That is, they involve a mechanism. But what, precisely, is a
mechanism? Are all mechanisms causal? And do mechanisms have a privileged relationship
to explanation? In this section, we begin to address these questions about the relationship
between mechanisms and explanations. For a more general discussion of mechanisms, we
direct readers to the chapter on mechanisms by Johnson and Ahn (this volume).

Within psychology, there is growing interest in the role of mechanisms in causal
reasoning. For example, Ahn, Kalish, Medin and Gelman (1995) found that people seek
“mechanistic” information in causal attribution. Park and Sloman (2013) found that
people’s violations of the Markov assumption depended on their “mechanistic” beliefs
about the underlying causal structure. Buehner and McGregor (2006) showed that beliefs
about mechanism type moderate effects of temporal contiguity in causal judgments (see
also Ahn & Bailenson, 1996; Buehner & May, 2004; Fugelsang & Thompson, 2000;
Koslowski & Okagaki, 1986; Koslowski, Okagaki, Lorenz, & Umbach, 1989 ; for reviews see
Ahn & Kalish, 2013; Johnson & Ahn, this volume; Koslowski, 1996, 2012; Koslowski &
Masnik, 2010; Sloman & Lagnado, 2014; Waldmann & Hagmayer, 2013). Despite these
frequent appeals to mechanisms and mechanistic information, however, there isn’t an
explicit and widely endorsed conception of “mechanism” on offer.

Most often, a mechanism is taken to spell out the intermediate steps between some
cause and some effect. For example, Park and Sloman (2014) define a mechanism as “the

set of causes, enablers, disablers, and preventers that are directly involved in producing an
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effect, along with information about how the effect comes about, including how it unfolds
over time” (p. 807). Research that adopts a perspective along these lines often goes further
in explicitly identifying such mechanisms as explanations (and these terms are often used
interchangeably, as in Koslowski & Masnik, 2010). Other work operationalizes mechanisms
using measures of explanation, implicitly suggesting a correspondence. For example, to
validate a manipulation of mechanism, Park and Sloman asked participants whether the
same explanation applies to both effects in a common-cause structure (see also Park &
Sloman, 2013). Similarly, in a study examining mental representations of mechanisms,
Johnson and Ahn (2015) considered (but did not ultimately endorse) an “explanatory”
sense of mechanism, which they operationalized by asking participants to rate the extent to
which some event B explains why event A led to event C.

Shifting from psychology to philosophy, we find a class of accounts of explanation
that likewise associate explanations with a specification of mechanisms (e.g., Bechtel &
Abrahamsen, 2010; Glennan, 1996, 2002; Machamer, Darden, & Craver, 2000; Railton,
1978; Salmon, 1984). Consistent with the empirical work reviewed above, some of these
accounts (e.g., Railton, 1978; Salmon, 1984) consider mechanisms to be “sequences of
interconnected events” (Glennan, 2002, p. S345). Canonical examples include causal chains
or networks of events leading to a specific outcome, such as a person who kicks a ball,
which bounces off a pole, which breaks a window. On these views, explanation, causation,
and mechanisms are not only intimately related, but potentially interdefined.

A second view of mechanisms within philosophy, however, departs more
dramatically from work in psychology, and also suggests a more circumscribed role for

causation. These views analyze mechanisms as complex systems that involve a (typically
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hierarchical) structure and arrangement of parts and processes, such as that exhibited by a
watch, a cell, or a socioeconomic system (e.g., Bechtel & Abrahamsen, 2010; Bechtel &
Richardson, 1993; Glennan, 1996, 2002; Machamer, Darden, & Craver, 2000). Within this
framework, Craver and Bechtel (2007) offer an insightful analysis of causal and non-causal
relationships within a multi-level mechanistic system. Specifically, they suggest that
interlevel (i.e., “vertical”) relationships within a mechanism aren’t causal, but constitutive.
For instance, a change in rhodopsin in retinal cells can partially explain how signal
transduction occurs, but we wouldn’t say that this change causes signal transduction; it
arguably is signal transduction (or one aspect of it). Craver and Bechtel point out that
constitutive relations conflict with many common assumptions about event causation: that
causes and effects must be distinct events, that causes precede their effects, that the causal
relation is asymmetrical, and so on. Unlike causation, explanation can accommodate both
causal (intralevel) relationships and constitutive (interlevel) relationships, of the kind
documented by Prasada and Dillingham’s (2009) work on formal explanation.

Although Craver and Bechtel convincingly argue that the causal reading of interlevel
relationships is erroneous (see also Glennan, 2010, for related claims), as a descriptive
matter, it could be that laypeople nonetheless interpret them in causal terms. An example
from the Betty Crocker Cookbook, discussed by Patricia Churchland (1994), illustrates the
temptation. In the book, Crocker is correct to explain that microwave ovens work by
accelerating the molecules comprising the food, but she wrongly states that the excited
molecules rub against one another and that their friction generates heat. Crocker assumes
that the increase in mean kinetic energy of the molecules causes heat, when in fact heat is

constituted by the mean kinetic energy of the molecules (Craver & Bechtel, 2007). A study
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by Chi, Roscoe, Slotta, Roy and Chase (2012) showed that eighth and ninth graders, like
Crocker, tended to misconstrue non-sequential, emergent processes as direct sequential
causal relationships. It’s possible that adults might make similar errors as well,
assimilating non-causal explanations to a causal mold.

There are thus many open questions about how best to define mechanisms for the
purposes of psychological theory, and about the extent to which mechanisms are
represented in terms of strictly causal relationships. What we do know, however, is that
explanations and mechanisms seem to share a privileged relationship. More precisely,
there’s evidence that the association between mechanisms and explanation claims is closer
than that between mechanisms and corresponding causal claims (Vasilyeva & Lombrozo,
2015).

The studies by Vasilyeva and Lombrozo (2015) used “minimal pairs”: causal and
explanatory claims that were matched as closely as possible. For example, participants read
about a person, PK, who spent some time in the portrait section of a museum and made an
optional donation to the museum. They were then asked to evaluate how good they found
an explanation for the donation (“Why did PK make an optional donation to the museum?
Because PK spent some time in the portrait section”), or how strongly they endorsed a
causal relationship (“Do you think there exists a causal relationship between PK spending
some time in a portrait section and PK making an optional donation to the museum?”).

Vasilyeva and Lombrozo varied two factors across items and participants: the
strength of covariation evidence between the candidate cause and effect, and knowledge of
a mediating mechanism. In the museum example, some participants learned the speculative

hypothesis that “being surrounded by many portraits (as opposed to other kinds of
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paintings) creates a sense that one is surrounded by watchful others. This reminds the
person of their social obligations, which in turn encourages them to donate money to the
public museum.” Both explanation and causal judgments were affected by these
manipulations of covariation and mechanism information. However, they were not affected
equally: specifying a mechanism had a stronger effect on explanation ratings than on causal
ratings, while the strength of covariation evidence had a stronger effect on causal ratings
than on explanation ratings.

The findings from Vasilyeva and Lombrozo (2015) support a special relationship
between explanations and mechanisms. They also challenge views that treat explanations
as equivalent to identifying causal relationships, since matched explanation and causal
claims were differentially sensitive to mechanisms and covariation. The findings thus raise
the possibility that explanatory and causal judgments are tuned to support different
cognitive functions. For example, explanation could be especially geared towards reliable
and broad generalizations (Lombrozo & Carey, 2006), which can benefit from mechanistic
information: when we understand the mechanism by which some cause generates some
effect, we can more readily infer whether the same relationship will obtain across
variations in circumstances. By learning the mechanism that mediates the relationship
between visiting a portrait gallery and making an optional museum donation, for example,
we're in a better position to predict whether visiting a figurative versus an abstract
sculpture garden will have the same effect. This benefit can potentially be realized with
quite skeletal mechanistic (Rozenblit & Keil, 2002) or functional understanding (Alter,
Oppenheimer, & Zemla, 2010); people need not understand a mechanism in full detail to

gain some inferential advantage. Causal claims, by contrast, could more closely track the
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evidence concerning a particular event or relationship, rather than the potential for broad
generalization.

In sum, the picture that emerges is one of partial overlap between causality,
explanation, and mechanisms. Work in philosophy offers a variety of proposals
emphasizing different aspects of mechanisms: structure, functions, temporally unfolding
processes connecting starting conditions to the end state, and so on. Explanatory and
causal judgments could track different aspects of mechanisms, resulting in the patterns of
association and divergence observed. We suspect that adopting more explicit and
sophisticated notions of mechanism will help research in this area move forward. On a
methodological note, we think the strategy adopted in Vasilyeva and Lombrozo (2015) - of
contrasting the characteristics of causal explanation claims with “matched” causal claims -
could be useful in driving a wedge between different kinds of judgments, thus shedding
light on their unique characteristics and potentially unique roles in human cognition. This
strategy can also generalize to other kinds of judgments. For example, Dehghani, Iliev, and
Kaufmann (2012) and Rips and Edwards (2013) both report systematic patterns of
divergence between explanations and counterfactual claims, another judgment with a

potentially foundational relationship to both explanation and causation.

Concluding Remarks

Throughout the chapter, we've seen good evidence that explanatory considerations
affect causal reasoning, with implications for causal inference, causal learning, and
attribution. We’ve also considered different kinds of explanations, including their

differential effects on causal generalizations and causal representation, and the role of
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mechanisms in causal explanation. However, many questions remain open. We highlight
four especially pressing questions here.

First, we’ve observed many instances in which explanation leads to departures from
“normative” reasoning, at least on the assumption that one ought to infer causes and causal
relationships by favoring causal hypotheses with the highest posterior probabilities. Are
these departures truly errors? Or have we mischaracterized the relevant competence? In
particular, could it be that explanatory judgments are well-tuned to some cognitive end, but
that end is not the approximation of posterior probabilities?

Second, we've focused on a characterization of explanations and the effects of
engaging in explanation, with little attention to underlying cognitive mechanisms. How do
people actually go about generating and evaluating causal explanations? How do the
mental representations that support explanation relate to those that represent causal
structure? And how do explanatory capacities arise over the course of development?

Third, what's the relationship between causal and non-causal explanations? Are they
both explanatory by virtue of some shared explanatory relationship, or are causal
explanations explanatory by virtue of being causal, with non-causal explanations
explanatory for some other reason (for instance, because they embody a part-whole
relationship)? On each view, what are the implications for causation?

Finally, we’ve seen how debates in explanation (from both philosophy and psychology)
can inform the study of causation, with examples including inference to the best
explanation, the idea of a “contrast class,” and pluralism about explanatory kinds. Can the
literature on levels of explanation (e.g., Potochnik, 2010) perhaps inspire some new debates

about levels of causation (as in, e.g.,, Woodward, 2010)? Recent work on hierarchical
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Bayesian models and hierarchical causal structures are beginning to move in this direction,
with the promise of a richer and more powerful way to understand humans’ remarkable

ability to reason about and explain the causal structure of the world.
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