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How do explaining and prior knowledge contribute to learning?
Four experiments explored the relationship between explanation
and prior knowledge in category learning. The experiments inde-
pendently manipulated whether participants were prompted to
explain the category membership of study observations and
whether category labels were informative in allowing participants
to relate prior knowledge to patterns underlying category mem-
bership. The experiments revealed a superadditive interaction
between explanation and informative labels, with explainers who
received informative labels most likely to discover (Experiments
1 and 2) and generalize (Experiments 3 and 4) a pattern consistent
with prior knowledge. However, explainers were no more likely
than controls to discover multiple patterns (Experiments 1 and
2), indicating that effects of explanation are relatively targeted.
We suggest that explanation recruits prior knowledge to assess
whether candidate patterns are likely to have broad scope (i.e., to
generalize within and beyond study observations). This interpreta-
tion is supported by the finding that effects of explanation on prior
knowledge were attenuated when learners believed prior knowl-
edge was irrelevant to generalizing category membership (Experi-
ment 4). This research provides evidence that explanation can
serve as a mechanism for deploying prior knowledge to assess
the scope of observed patterns.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Children, adults, and students of all ages face the common challenge of discovering useful informa-
tion and then generalizing it to novel contexts. While learning and generalization engage a variety of
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cognitive processes, researchers across several fields have recognized an important role for explana-
tion (Lombrozo, 2012). For example, prompting young children to explain observations that challenge
their intuitive theories can accelerate conceptual development (e.g., Amsterlaw & Wellman, 2006;
Siegler, 1995; Wellman & Liu, 2007), and prompting students to explain why a fact is true or why a
solution to a problem is correct can improve both learning and transfer to novel problems (e.g., Chi,
de Leeuw, Chiu, & LaVancher, 1994; Fonseca & Chi, 2011). How and why does explaining have these
effects? In particular, how does explaining guide discovery and generalization?

We propose that explaining recruits a set of criteria for what constitutes a good explanation, and
that these criteria in turn act as constraints on learning and generalization (Lombrozo, 2012). For
example, explanations are typically judged better if they are simple (Lombrozo, 2007; Read & Mar-
cus-Newhall, 1993) and have what we refer to as broad scope – appealing to features, principles, or
patterns that accurately apply to numerous instances across a range of contexts (Pennington & Hastie,
1992; Preston & Epley, 2005; Read & Marcus-Newhall, 1993). In this paper we focus on scope to con-
sider whether the act of generating explanations makes learners more likely to discover and general-
ize patterns with broad scope. For example, in trying to explain why peafowl at the zoo vary in color,
one might discover that males (peacocks) tend to be colorful while females (peahens) tend to be drab.
This discovery and the reasoning behind it could in turn support inferences about unobserved peafowl,
such as the generalization that all male and female peafowl are likely to conform to this pattern, and
not just the particular species observed at the zoo.

The idea that explaining makes learners more sensitive to scope predicts that explaining should in-
crease the extent to which learners consult prior knowledge.1 Learning poses a challenging inductive
problem, and prior knowledge can serve as an important cue to which patterns are likely to have broad
scope. For example, an explanation for variation in peafowl coloration that appeals to a generalization
over sex (males versus females) could be preferred over one formulated over size (larger versus smaller)
because prior knowledge favors the former as more likely to generalize beyond the peahen sample ob-
served. So if explaining changes the criteria that learners adopt in generating or evaluating hypotheses by
leading them to privilege patterns with broad scope, then explaining should recruit prior knowledge in
evaluating the scope of candidate patterns. In addition to testing this prediction, we consider whether
such an effect (if found) results from a special relationship between explanation and prior knowledge
or instead from a more general effect, such as a global increase in how much information explainers dis-
cover and retain.

By focusing on the relationship between explanation and prior knowledge, we gain unique leverage
in addressing two important questions in cognitive science: how explanation impacts learning and
generalization, and when and how prior knowledge is brought to bear on learning. In addition to
bridging research on explanation and prior knowledge, we bridge two research traditions by examin-
ing questions about explanation and learning (typically studied by educational psychologists) in the
context of artificial category learning (typically studied by cognitive psychologists). In the remainder
of the introduction we briefly review past work from each of these traditions before presenting the key
theory, questions, and predictions that motivate the four experiments that follow.
1.1. General and selective effects of explanation on learning

Research in education has investigated the role of explanation in learning in the context of the ‘‘self-
explanation effect’’: the phenomenon whereby explaining, even to oneself, can improve learning. Ef-
fects of self-explanation have been documented in domains from biology to mathematics, from ele-
mentary school through university, and under a variety of methods for eliciting explanations (e.g.,
Aleven & Koedinger, 2002; Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi et al., 1994; Crowley & Sie-
gler, 1999; Graesser, Singer, & Trabasso, 1994; Nokes, Hausmann, VanLehn, & Gershman, 2011; Renkl,
1997; Rittle-Johnson, 2006; Siegler, 2002). This diversity is matched by a wide range of proposals
concerning how explanation affects learning. For example, a prompt to explain could encourage the
1 Throughout the paper we use the term ‘‘prior knowledge’’ to indicate a learner’s beliefs or commitments, whether or not they
are true. That is, our use of the term ‘‘knowledge’’ is non-factive.
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generation of inferences and invention of procedures (e.g., Chi et al., 1994; Renkl, 1997; Rittle-Johnson,
2006), boost metacognitive monitoring and help identify gaps in comprehension (e.g., Chi et al., 1989;
Nokes et al., 2011; Palinscar & Brown, 1984), and/or promote the revision of beliefs and strategies (e.g.,
Chi et al., 1994; Chi, 2000; Legare, Gelman, & Wellman, 2010; Rittle-Johnson, 2006; Siegler, 2002).

Many of these accounts are compatible with the idea that explaining effectively increases the same
kind of cognitive processing that occurs in the absence of explanation. For example, some effects of
explanation are attributed to an increase in learners’ attention, motivation, or processing time (e.g.,
Siegler, 2002), and one recent review of research on self-explanation proposes that explanation
improves learning because it is a constructive activity, and that equivalently constructive activities
have comparable effects (Chi, 2009). While explaining could be especially well-suited to increasing
attention, engagement, or some other cognitive resource, the outcome of such an increase is likely
to be ‘‘general’’ in the sense that it extends to many kinds of learning and is not selectively tuned
to properties of explanation.

A complementary approach is to focus on effects of explanation that are more ‘‘selective’’ in the
sense that they derive from particular properties of explanation and have more targeted conse-
quences. For example, research suggests that explaining encourages young children to focus on causal
mechanisms at the expense of memory for color (Legare & Lombrozo, submitted for publication), and
asking middle-school children to explain leads them to privilege causal hypotheses at the expense of
observed covariation (Kuhn & Katz, 2009). Studies with adults additionally find that explaining
worked examples can foster detailed verbal elaboration of concepts at the expense of procedural
knowledge (Berthold, Roder, Knorzer, Kessler, & Renkl, 2011) and promote insight problem solving
at the expense of memory for what was studied (Needham & Begg, 1991). These examples indicate
that explanation is not merely neutral with respect to some kinds of learning, such as memory for ob-
served examples, but can even be harmful.

Of course, explaining is likely to have both relatively general and more selective effects, and the
difference is potentially one of degree rather than kind. Nonetheless, the distinction is useful in moti-
vating a set of questions and analyses that allow us to more precisely specify how and why explana-
tion is selective in the way that it is. For example, explaining could improve students’ learning by
increasing general engagement, but in particular engage learners in searching for underlying patterns.
More generally, selective effects can clarify how and why explaining helps learning by identifying
what people are more engaged in, which beliefs are revised, what kinds of inferences are generated,
and so on. Our goal in this paper is to more precisely specify what the effects of explanation are
and why it is that explaining, in particular, produces those effects. Identifying selective effects of
explanation – cases in which explanation impacts some kinds of learning but not others – is a useful
strategy for doing so. In the experiments that follow, we therefore include more than one measure of
learning, where we predict effects of explanation for some measures but not for others.

1.2. Prior knowledge and explanation in learning

Only a few studies in educational settings have directly investigated the relationship between
explanation, prior knowledge, and learning. These studies have examined how the efficacy of explana-
tion prompts is influenced by a learner’s level of prior knowledge about the topic being learned. How-
ever, findings have been mixed (e.g., Best, Ozuru, & McNamara, 2004; Chi & VanLehn, 1991; Chi et al.,
1994; McNamara, 2004; Renkl, Stark, Gruber, & Mandl, 1998; Wong, Lawson, & Keeves, 2002). One
challenge for interpreting these inconsistent findings is the variation in how different studies assess
and operationalize prior knowledge, explanation, and learning. Moreover, they rely on existing
variation in learners’ knowledge, rather than using experimental manipulations that can more clearly
isolate causal relationships between prior knowledge and learning.

Taking a complementary approach to education research, a sizeable literature in cognitive psychol-
ogy has investigated effects of prior knowledge on learning by experimentally manipulating a
learner’s prior knowledge concerning artificial categories that are learned in the context of well-
controlled laboratory tasks (e.g., Heit, 2001; for reviews see Murphy, 2002; Ross, Taylor, Middleton,
& Nokes, 2008; Wattenmaker, Dewey, Murphy, & Medin, 1986; Wisniewski, 1995). Within this
tradition, prior knowledge has typically been shown to facilitate learning (although see
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Murphy & Wisniewski, 1989), increase the rate at which novel categories are learned (e.g., Kaplan &
Murphy, 2000), decrease prediction errors during learning (e.g., Heit & Bott, 2000), and make it possi-
ble for learners to acquire categories with a complex relational structure (Rehder & Ross, 2001). For
example, Murphy and Allopenna (1994) had participants learn novel categories that either grouped
features relevant to being a ‘‘space building’’ or an ‘‘underwater building’’ or scrambled these features
across categories. Participants in the former condition learned the categories more quickly and were
more accurate in reporting the frequency with which different features appeared in each category.

How might explanation affect whether and how prior knowledge influences category learning?
Prominent theories of conceptual representation accord a central role to ‘‘explanatory beliefs’’ (Carey,
1985; Murphy & Medin, 1985), a phrase that is often used synonymously with a learner’s prior knowl-
edge (see also Ahn, 1998; Lombrozo, 2009; Rehder, 2003; Rips, 1989). However, research in these tra-
ditions has overwhelmingly focused on explanations as the outcome of learning, and not on the
process of explaining as itself a mechanism for concept acquisition and revision. In fact, only one study
(to our knowledge) has experimentally manipulated whether participants explained during category
learning (Chin-Parker, Hernandez, & Matens, 2006). The study found that participants who explained
were more successful than those who did not in learning diagnostic features of category membership
that could be related to prior knowledge, but additionally learned arbitrary diagnostic features – con-
sistent with the idea that explanation recruits prior knowledge through mechanisms with either gen-
eral or selective effects. No studies (to our knowledge) have manipulated both whether learners
explain and the extent or nature of their prior knowledge to directly investigate how explanation
and prior knowledge interact.

1.3. Explanation and prior knowledge: a subsumptive constraints account

We propose a subsumptive constraints account of the relationship between explanation and prior
knowledge in learning and test this account using the experimental methods of research on category
learning. Our predictions follow from a commitment to what constitutes an explanation: To be explan-
atory, explanations must explicitly or implicitly appeal to a pattern or generalization of which the
explanandum (what is being explained) is an instance. This idea is motivated by ‘‘subsumption’’ and
‘‘unification’’ theories of explanation in philosophy of science, according to which explanations sub-
sume the explanandum under a law or explanatory pattern, and in so doing ideally unify disparate
observations or phenomena under that law or pattern (Friedman, 1974; Kitcher, 1981, 1989; see Wood-
ward (2010) for review). In the context of everyday judgments, subsuming patterns can take the form
of rules, causal relationships, or principles, among others. For example, explaining an object’s member-
ship in one category rather than another could appeal to a rule concerning membership (e.g., ‘‘avocados
are fruits rather than vegetables, because fruits contain the seed of their plant while vegetables do
not’’), explaining why someone has a particular characteristic could appeal to a causal regularity
(e.g., ‘‘Anna is politically savvy because she comes from a family of activists’’), and explaining the solu-
tion to a problem could appeal to a general principle (e.g., ‘‘The desired angle must be 30�, because the
sum of angles in a triangle is 180�’’). As a consequence, explaining will drive learners to seek underlying
patterns, which then serve to guide learning and generalization. For example, in explaining why your
friend Anna is so politically informed, you might note that she comes from a family of activists, and in-
duce the general pattern that people who are raised by activists tend to be politically informed.

According to this account, explanations should be better to the extent that the patterns they invoke
unify or subsume a large number of cases and are violated by few exceptions. Explaining should
accordingly drive learners to seek patterns that match the greatest proportion of cases to which they
can be applied. We refer to the number of (observed and unobserved) cases to which a pattern suc-
cessfully applies as its ‘‘scope.’’ Because a pattern’s scope is rarely directly available, it must be inferred
on the basis of several cues, including how many of the currently observed cases fall under the pattern,
the proportion of cases from past experience to which it has successfully applied, and more generally,
any prior knowledge that can inform inferences about the pattern’s likely extension. If the subsump-
tive constraints account is correct, then explaining should not only make learners more likely to dis-
cover patterns, but also influence which patterns are discovered, with prior knowledge especially
likely to be consulted as explainers evaluate the scope of candidate patterns. This generates the



J.J. Williams, T. Lombrozo / Cognitive Psychology 66 (2013) 55–84 59
prediction that explaining will interact with prior knowledge relevant to assessing scope, to guide dis-
covery and generalization. Specifically, learners who are prompted to explain should consult prior
knowledge to a greater degree than those who learn without explaining, and prompts to explain
should accordingly have a targeted impact on measures of learning that track prior knowledge and
scope, but not necessarily other measures of learning, such as the total number of patterns discovered
or recalled. In contrast, if explanation’s primary effects are instead to increase attention, motivation, or
even the overall search for underlying patterns, the effects of explanation and prior knowledge could
be independent, and also generate more widespread consequences for learning.

Williams and Lombrozo (2010) first proposed the subsumptive constraints account and reported evi-
dence consistent with the idea that explanation drives learners towards patterns with broader scope.
Participants learned about two categories of robots and were prompted to either explain the category
membership of eight labeled examples or to engage in a control task, such as description or thinking
aloud. Across three experiments, explaining promoted the discovery of a subtle pattern relating foot
shape to category membership (i.e., that ‘‘Glorp’’ robots have pointy feet and ‘‘Drent’’ robots have flat
feet), which accounted for the membership of every study observation. In the control conditions par-
ticipants tended to discover a more salient pattern concerning body shape (i.e., that ‘‘Glorp’’ robots are
typically square and ‘‘Drent’’ robots are typically round) that had lower scope (i.e., it only accounted
for six of the eight examples) or to encode specific properties of the examples, such as their color.
These findings provide initial evidence that seeking explanations promotes the discovery of patterns,
and is consistent with the prediction that explaining favors patterns that account for a larger propor-
tion of cases – in these experiments, eight out of eight observations as opposed to six out of eight.
However, the experiments were not designed to test the broader issues of interest here concerning
the role of prior knowledge in learning or the selectivity of explanation’s effects.

In the four experiments reported below, we test the broader implications of the subsumptive con-
straints account. Specifically, we aim to address the following key questions. First, does explaining
make learners more likely to consult prior knowledge in learning, and therefore to discover and gen-
eralize patterns consistent with prior knowledge? If so, is this the result of a general effect (e.g., boost-
ing attention or the discovery of all kinds of patterns) or a selective effect (e.g., a constraint on which
patterns are discovered)? And second, does explanation’s selectivity in part derive from the evaluation
of the scope of candidate patterns, as our account implies?
2. Overview of experiments

To investigate whether and how explanation and prior knowledge interact to guide learning and
generalization, we presented participants with a category learning task in which we manipulated both
the extent to which learners explained and their ability to recruit relevant prior knowledge. We
accomplished the former by prompting some participants to explain the category membership of cat-
egory exemplars and others to engage in a control task (either free study or writing their thoughts dur-
ing study). We accomplished the latter by providing category labels that were either ‘‘blank’’ (i.e.,
nonsense words) or meaningful and potentially relevant to particular category features.

While most research on knowledge effects in category learning has manipulated prior knowledge
through the features that make up novel categories (e.g., Murphy & Allopenna, 1994) or with explicit
hints about relevant prior knowledge (e.g., Pazzani, 1991; Wattenmaker et al., 1986), the relatively subtle
manipulation of category labels has been shown to influence the prior knowledge learners can recruit in
learning (e.g., Barsalou, 1985; Wisniewski & Medin, 1994). For example, Wisniewski and Medin (1994)
gave participants a set of drawings from children identified as coming from a ‘‘creative’’ versus a ’’non-
creative’’ group, or from ‘‘group 1’’ versus ‘‘group 2,’’ and found that participants constructed different
features to discriminate the categories across these conditions. Our experiments used a similar manipu-
lation to influence whether participants could recruit prior knowledge relevant to the learning task.

In the task we employed, participants were presented with category exemplars consistent with multi-
ple patterns, only some of which were knowledge-relevant. For example, participants in all experiments
were presented with sample robots from two categories, where those in one category had feet that were
flat on the bottom and those in the other had feet that were pointy. The robots also varied across
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categories in other ways, including (in some experiments) the length of their antennae. When the robots
received meaningful labels, such as ‘‘indoor robots’’ versus ‘‘outdoor robots,’’ the feature of foot shape was
‘‘label-relevant’’ in that a learner could plausibly relate flat versus pointy feet to use on different indoor
versus outdoor surfaces, while a feature such as length of antennae was ‘‘label-irrelevant.’’

With this simple experimental design and appropriate category structures, we examined whether
and how explanation and prior-knowledge interacted in the discovery and generalization of patterns
underlying category membership. In Experiments 1 and 2, we tested the prediction that prior
knowledge is more likely to be recruited to guide discovery when learners engage in explanation.
Specifically, we examined how discovery of the label-relevant pattern was influenced by informative
labels in the absence of a prompt to explain (control + blank labels versus control + informative
labels), and compared this effect to that obtained when learners were prompted to explain (explain
+ blank labels versus explain + informative labels).

Experiments 1 and 2 additionally considered the mechanisms by which explanation influenced dis-
covery. If explaining increases pattern discovery through a general effect – such as a boost in attention,
engagement, or motivation – then effects of explanation would likely extend to multiple measures of
learning. In contrast, if explaining influences discovery through a more selective effect, then a prompt
to explain could have more targeted consequences. To test the generality of explanation’s effects, we
examined how a prompt to explain and the provision of informative labels influenced discovery of
more than one pattern underlying category membership.

Experiments 3 and 4 moved away from discovery to focus on generalization. First, when multiple
patterns have been discovered, does explaining make a further contribution in guiding generalization?
We predicted the same interaction for pattern generalization as for discovery, with explanation
increasing the extent to which learners recruited prior knowledge to guide judgments. In addition,
in Experiment 4 we more directly tested our claim that explanation recruits prior knowledge because
it informs the assessment of scope.

In sum, the four experiments we present below considered the ways in which explanation and prior
knowledge interact to guide learning and generalization. In particular, we considered how both general
and selective effects of explanation are influenced by a learner’s prior knowledge to better understand
the role of explanation in learning and the relationship between explanation and prior knowledge.

3. Experiment 1

Experiment 1 investigated the effect of constructing explanations (task: explain versus free study)
and possessing prior knowledge (label type: blank versus informative) on discovery of label-relevant
and label-irrelevant patterns underlying the category membership of study observations. Participants
learned about two categories of alien robots by studying the eight observations shown in Fig. 1. After
study, novel robots were presented for classification in order to ascertain whether category member-
ship was extended on the basis of the label-relevant pattern, the label-irrelevant pattern, or similarity
to a studied observation.

The design independently manipulated task (explain versus free study) and prior knowledge (blank
versus informative labels) in order to examine the independent and joint effects of explanation and
prior knowledge on: (1) the discovery of label-relevant and label-irrelevant patterns; (2) the number
of patterns discovered; (3) the relationship between discovering the label-relevant and label-irrele-
vant pattern; and (4) the use of particular patterns in categorizing novel items. With these varied mea-
sures we could evaluate the selectivity of explanation’s effects.

3.1. Methods

3.1.1. Participants
Four-hundred-and-seven UC Berkeley undergraduate students participated for course credit or

monetary reimbursement.2
2 Experiments using related images were previously conducted with this participant pool, so after the study we asked
participants if they might have seen the robots before, and excluded an additional 124 participants who responded affirmatively.
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3.1.2. Materials
3.1.2.1. Study observations. Participants learned about eight alien robots from two categories, shown in
Fig. 1a. In the blank labels conditions, the first category was labeled ‘‘Glorp robots’’ and the second
‘‘Drent robots,’’ while in the informative labels conditions the first category was labeled ‘‘Outdoor ro-
bots’’ and the second ‘‘Indoor robots.’’

The category membership of these eight robots followed two patterns, identified as the label-rel-
evant pattern and the label-irrelevant pattern. The label-relevant pattern was that all four Outdoor
(Glorp) robots had pointy feet while all four Indoor (Drent) robots had flat feet. These features were
chosen with the assumption that participants could utilize prior knowledge to relate pointy versus flat
feet to properties of Outdoor versus Indoor robots.3 The label-irrelevant pattern was that all four Out-
door (Glorp) robots had a shorter left antenna and all four Indoor (Drent) robots had a shorter right an-
tenna; we expected that participants’ prior knowledge would less readily relate relative antenna length
to properties of Outdoor versus Indoor robots. Each robot also varied in body shape and in left and right
colors, but these features were not diagnostic of category membership as they occurred equally often in
each category.

3.1.2.2. Categorization probes. To assess which features participants used in generalizing category
membership from the study observations to novel robots, participants classified fifteen unlabeled ro-
bots. Participants could categorize these robots in at least three ways. First, participants could discover
the label-relevant pattern about feet (pointy versus flat feet) and categorize new robots based on foot
shape. Second, participants could discover the label-irrelevant pattern about antennae (shorter left
versus shorter right antenna) and categorize based on antenna height. Finally, instead of using a pat-
tern, participants could categorize new items on the basis of their similarity to individual study items,
where similarity was measured by tallying the number of shared features across items.4 We refer to
these bases for generalizing category membership as ‘‘label-relevant pattern,’’ ‘‘label-irrelevant pattern,’’
and ‘‘item similarity,’’ respectively.

Ten of these novel robots pitted one basis for categorization against the other two and were con-
structed by taking novel combinations of features from study observations. Specifically, four label-rel-
evant pattern probes yielded one classification according to the label-relevant pattern and another
according to both the label-irrelevant pattern and item similarity, with three label-relevant pattern
3 In order to verify that participants associated the informative labels with these features, we presented a separate group of
participants from the same pool with the individual features of robots from Experiment 2 (see Fig. 1b), which contained the
features used in all four experiments. Ratings of how important the features were to which category a robot belonged to verified
our assumptions: Foot shapes were rated as most important for robots labeled Outdoor/Indoor and antenna shapes as most
important for robots labeled Receiver/Transmitter (these labels are used in Experiments 3 and 4).

4 We have verified in previous work (Williams & Lombrozo, 2010) that this measure tracks participants’ similarity judgments for
stimulus materials like those employed in the current experiment.
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probes and three item similarity probes that likewise isolated a single basis for categorization. Four
additional label-relevant transfer probes also pitted the label-relevant pattern against the other two
bases for generalization, but used previously unseen foot shapes that conformed to the pointy/flat pat-
tern. Finally, there was one item for which all three bases yielded the same classification. As described
later, participants’ bases for generalization were inferred from patterns of classifications across these
fifteen probes.

3.1.3. Procedure
3.1.3.1. Learning phase. Participants in both the explain and free study conditions were instructed that
they would be looking at two types of robots on the planet Zarn and that they would later be tested on
their ability to remember and categorize robots.

The eight study observations were shown onscreen for two minutes. The robots were presented in
a scrambled order, with category membership and identifying number (1 through 8) clearly indicated
for each robot. Participants in the free study conditions were told, ‘‘Robots 1, 2, 3 and 4 are Outdoor
(Glorp) robots, and robots 5, 6, 7 and 8 are Indoor (Drent) robots.’’ Participants in the explain condi-
tions were told ‘‘Explain why robots 1, 2, 3 and 4 might be Outdoor (Glorp) robots, and explain why
robots 5, 6, 7 and 8 might be Indoor (Drent) robots.’’ Participants typed their explanations into a box
onscreen.

3.1.3.2. Test phase.
3.1.3.2.1. Pattern discovery. For both the label-relevant (foot) pattern and the label-irrelevant (antenna)
pattern, participants were asked if they could tell whether a robot was Outdoor (Glorp) or Indoor (Drent)
by looking at its feet (antennae), and if they could, to state the difference(s) between categories.
3.1.3.2.2. Basis for categorization. The categorization probes were presented in random order, with
participants categorizing each robot as Outdoor (Glorp) or Indoor (Drent).
3.1.3.2.3. Explanation self-report. To examine effects of spontaneous explanation, all participants were
asked if they were trying to explain category membership while viewing the eight robots, and
responded ‘‘Yes,’’ ‘‘Maybe,’’ or ‘‘No.’’
3.1.3.2.4. Additional measures. To examine whether being prompted to explain changed participants’
assumptions about the likely presence of a pattern, they were asked, ‘‘What do you think the chances
are that there is one single feature that underlies whether a robot is Outdoor (Glorp) or Indoor (Drent)
– a single feature that could be used to classify ALL robots?’’ Participants responded on a scale from 0
to 100.

Participants were also asked to report any differences they noticed across categories and used in
classification, and to rank the relative importance of each feature (feet, antennae, body, and color)
in categorization. These questions were included in case participants reported unanticipated differ-
ences between categories, but as this very rarely happened the responses were redundant with the
pattern discovery questions, and are not discussed further.

Participants encountered the test measures in the following order: categorization probes, probabil-
ity of pattern, category differences, discovery of label-irrelevant antenna pattern, explanation self-re-
port, discovery of label-relevant foot pattern.

3.2. Results

3.2.1. Discovery of patterns
On the pattern discovery questions, participants were credited with discovery of the label-relevant

(foot) pattern and label-irrelevant (antenna) pattern if they accurately cited the corresponding diag-
nostic features. The primary coder’s reliability was confirmed by agreement of 98% with a second co-
der’s classification of 25% of the responses. Fig. 2a reports discovery of the label-relevant and label-
irrelevant patterns as a function of task and label type, and illustrates that discovery rates were higher
for participants who explained, with the pattern most likely to be discovered dependent on the pres-
ence of informative labels.

The effects of task and label type on discovery of the label-relevant pattern were explored using a
log-linear analysis on task (explain, free study), label type (blank labels, informative labels), and
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Fig. 2. Results from Experiment 1 (a–c) and Experiment 2 (d–f). Error bars represent one standard error of the mean in each
direction. Pattern discovery (a and d): Proportion of participants who discovered the label-relevant and label-irrelevant patterns,
and for Experiment 2, the additional partially reliable body shape and antenna patterns. Number of patterns discovered (b and e):
Proportion of participants who discovered no patterns, exactly one pattern, or two or more patterns. Conditional discovery (c and
f): Of participants who discovered either the label-relevant or label-irrelevant pattern, the proportion that also discovered an
additional pattern.
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discovery of the label-relevant pattern (discovered, not discovered). This revealed an interaction be-
tween task and discovery, v2(1, N = 407) = 11.65, p < 0.01, with higher discovery rates for participants
who explained, as well as an interaction between label type and discovery, v2(1, N = 407) = 11.61,
p < 0.01, with higher discovery rates for participants who received informative labels. However, these
interactions were superseded by a three-way interaction between task, label type, and discovery,
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v2(1, N = 407) = 3.98, p < 0.05: Discovery was highest among participants who explained and received
informative labels. In fact, discovery of the label-relevant pattern was not significantly improved by
explaining when blank labels were provided, v2(1, N = 207) = 1.43, p = 0.15, nor by providing informa-
tive labels in free study conditions, v2(1, N = 200) = 0.55, p = 0.52.

A parallel analysis on discovery of the label-irrelevant pattern also revealed a three-way interaction
with task and label type, v2(1, N = 407) = 5.48, p < 0.05, superseding interactions between task and
discovery, v2(1, N = 407) = 17.39, p < 0.001, and label type and discovery, v2(1, N = 407) = 11.47,
p < 0.001. However, this interaction was driven by elevated discovery of the label-irrelevant pattern
by participants who explained with blank labels. In fact, explaining with informative labels led to low-
er discovery of the label-irrelevant (antenna) pattern than explaining with blank labels,
v2(1, N = 207) = 17.98, p < 0.01.

These findings suggest that explaining boosts the discovery of patterns underlying category mem-
bership, with prior knowledge influencing which pattern is discovered. When informative labels were
provided, explaining boosted discovery of the label-relevant pattern. When blank labels were pro-
vided, explaining boosted discovery of the label-irrelevant pattern.
3.2.2. Number of patterns discovered
Fig. 2b indicates the proportion of participants who discovered neither pattern, exactly one pattern,

or both the label-relevant and label-irrelevant patterns, and illustrates that participants in the free
study conditions overwhelmingly discovered zero patterns, while those in the explain condition most
often discovered exactly one, irrespective of label type.

A log-linear analysis on task (explain, free study), label type (blank, informative), and number of
patterns discovered (zero, one, two) revealed interactions between number of patterns discovered
and task, v2(2, N = 407) = 80.97, p < 0.001, as well as between number and label type,
v2(2, N = 407) = 8.53, p < 0.05. We therefore performed three separate log-linear analyses on whether
or not a participant had discovered zero, one, or two patterns. Participants prompted to explain were
less likely than participants in the free study conditions to discover zero patterns,
v2(1, N = 407) = 71.52, p < 0.001, but more likely to discover exactly one, v2(1, N = 407) = 74.86,
p < 0.001, which was also more likely among participants receiving blank labels,
v2(1, N = 407) = 7.64, p < 0.01. There was no effect of explanation on discovering two patterns,
although there was a marginal effect of label type, v2(1, N = 407) = 3.50, p = 0.062, with informative
labels increasing discovery of two patterns.

These results confirm the importance of explaining in pattern discovery, but it is notable that
explaining did not boost the discovery of multiple patterns, instead driving participants to discover
a pattern.
3.2.3. Conditional pattern discovery
We additionally examined the discovery rate for one pattern given discovery of the other, which we

call ‘‘conditional discovery’’ (see Fig. 2c). Log-linear analyses were performed with task and label type
crossed against (1) discovery of the label-irrelevant pattern given discovery of the label-relevant pat-
tern (i.e., discovered label-relevant pattern, discovered both patterns) and (2) discovery of the label-
relevant pattern given discovery of the label-irrelevant pattern (i.e., discovered label-irrelevant pat-
tern, discovered both patterns).

Among participants who discovered the label-relevant pattern, the probability of also discovering
the label-irrelevant pattern was lower in the explain than free study conditions, as revealed by a task
by discovery interaction, v2(1, N = 42) = 7.10, p < 0.01. And among those who discovered the label-
irrelevant pattern, those in the explain conditions were less likely to have also discovered the label-
relevant pattern, v2(1, N = 69) = 6.73, p < 0.01. In other words, relative to free study, participants in
the explain conditions who discovered either pattern were less likely to discover a second pattern.
In addition, those in the informative labels conditions who discovered the label-irrelevant pattern
were more likely to have also discovered the label-relevant pattern, v2(1, N = 200) = 11.88, p < 0.01),
which was driven primarily by the free study-informative labels condition. No other effects were
significant.
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These findings reinforce the idea that explaining has selective effects, and even suggest that
explaining can hinder discovery under some conditions.
3.2.4. Basis for categorization
Participants’ basis for generalizing category membership to new robots was inferred from classifi-

cation of the categorization probes – specifically, whether there were more judgments consistent with
use of the label-relevant pattern, the label-irrelevant pattern, or item similarity, with ties coded as
‘other.’ Table 1 reports the proportion of participants classified as using each basis for categorization.

Effects of explanation were first analyzed with a log-linear test with three factors: task (explain,
free study), label type (informative, blank), and basis for categorization (label-relevant pattern, la-
bel-irrelevant pattern, item similarity). This analysis revealed interactions between task and basis,
v2(3,N = 407) = 92.02, p < 0.0001, as well as between label type and basis, v2(3,N = 407) = 17.34,
p < 0.001, with a marginal three-way interaction, v2(3,N = 407) = 6.89, p = 0.07. To interpret these ef-
fects we performed log-linear analyses on task, label type, and each individual basis for categorization
(target basis versus all others). Overall, the results paralleled those for discovery. Explaining interacted
with the provision of informative labels to promote use of the label-relevant pattern,
v2(1, N = 407) = 7.27, p < 0.01, superseding the effects of explanation, v2(1, N = 407) = 4.98, p < 0.05,
and prior knowledge, v2(1, N = 407) = 4.21, p < 0.05. Task and label type also interacted with use of
the label-irrelevant pattern, v2(1, N = 407) = 7.18, p < 0.05, with significant effects of task,
v2(1, N = 407) = 17.39, p < 0.001, and label type, v2(1, N = 407) = 11.47, p < 0.01. One additional finding
of note was that participants in the free study conditions were significantly more likely to generalize
category membership by item similarity, v2(1, N = 407) = 3.90, p < 0.05. No other effects were
significant.

These findings mirror those for pattern discovery very closely, and could thus simply reflect the
consequences of discovery. Alternatively, they could reflect independent effects of explanation and
prior knowledge on how patterns are generalized. Effects of generalization that were not attributable
to the consequences of discovery could in principle be detected by restricting analyses to just those
participants who discovered both patterns. However, discovery of both patterns was sufficiently
low to preclude a statistically reliable analysis (log-linear analysis typically requires that there be
no fewer than five observations per cell). We revisit this question in Experiments 3 and 4, where
we examine the effect of explanation on generalization more directly.
3.2.5. Self-reported explanation
Participants were credited with explaining if they answered ‘‘yes’’ to the explanation self-report

question, resulting in the following rates of self-reported explanation: 65% for free study/blank labels,
88% for explain/blank labels, 58% for free study/informative labels, and 82% for explain/informative la-
bels. A significantly higher proportion of participants reported self-explaining after receiving explain
than free study prompts, v2(1, N = 407) = 26.79, p < 0.001, although self-reported explanation was still
considerable in free study. Label type did not impact self-reported explanation, v2(1, N = 407) = 1.21,
p = 0.162.

To examine the relationship between spontaneous explanation, pattern discovery, and generaliza-
tion, we replicated the previous analyses, examining only the free study conditions and replacing the
variable of ‘‘task’’ with ‘‘self-reported explanation.’’ Table 2 reports the data relevant to this analysis.
Table 1
Proportion of participants classified as using each basis for categorization in Experiment 1.

Pattern use Blank labels Informative labels

Free study Explain Free study Explain

Label-relevant (100% feet) 0.36 0.32 0.30 0.61
Label-irrelevant (100% antenna) 0.21 0.60 0.16 0.30
Item similarity 0.42 0.07 0.50 0.07
Other 0.01 0.01 0.04 0.02



Table 2
Proportion of participants discovering each pattern in the free study conditions from Experiment 1 as a function of label type and
self-reported explanation.

Pattern discovered Blank labels Informative labels

Reported seeking explanations?

No Yes No Yes

Both 0.04 0.06 0.03 0.14
Label-relevant (100% foot) 0.13 0.28 0.21 0.38
Label-irrelevant (100% antenna) 0.14 0.39 0.03 0.29
Neither 0.61 0.28 0.69 0.29
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Overall, the pattern of results for self-reported explanation paralleled the previous findings and sug-
gest that spontaneous explanation in the free study condition had similar effects to prompted expla-
nation. Specifically, all two-way interactions from the analyses above (Sections 3.2.1 and 3.2.4)
reached significance (ps < .01), but the three-way interactions did not.5 In particular, the key interac-
tion between explanation, label type, and discovery of the label-relevant pattern was not significant
(p = .15), and that for explanation, label type, and use of the label-relevant pattern as a basis for catego-
rization was marginal (p = .06). This could be due to the smaller number of participants and reduced sta-
tistical power in these analyses.
3.2.6. Probability of pattern
Judgments of the probability that there was a single pattern underlying the category membership

of all robots was (as expected) higher for participants who discovered a pattern (75%) than those who
did not (36%), t(405) = 12.60, p < 0.001, d = 1.29. For participants who did not discover a pattern, a task
by label type ANOVA with probability judgments as a dependent variable did not reveal significant
effects of label type (blank labels: M = 32%, SD = 28%; informative labels: M = 41%, SD = 30%;
F(1,150) = 2.68, p > 0.10), or of task (explain: M = 45%, SD = 31%; free study: M = 34%, SD = 28%;
F(1,150) = 3.40, p = 0.07), suggesting that effects of task on discovery were driven by engaging in
explanation, and were not merely the result of task demands, such as inferences about the category
structure resulting from the instruction to explain.
3.2.7. Summary
Experiment 1 found that generating explanations interacted with the provision of informative la-

bels to promote discovery of the label-relevant pattern. When blank labels were provided, explaining
again interacted with label type, but in promoting discovery of the label-irrelevant pattern. In other
words, explaining increased the rate at which participants discovered a pattern underlying category
membership, but which pattern was discovered depended on the kinds of labels presented and their
relationship to prior knowledge. These findings were closely mirrored by those concerning partici-
pants’ bases for generalizing category membership to novel items, with suggestive evidence that spon-
taneous explanation in the free study conditions produced similar effects.
5 Self-reported explanation was related to both discovering the label-relevant pattern, v2(1, N = 407) = 8.64, p < 0.01, and using
it as a basis for categorization, v2(1, N = 407) = 8.05, p < 0.01. Informative labels similarly increased discovery, v2(1, N = 407) =
14.05, p < 0.01, and use, v2(1, N = 407) = 7.10, p < 0.01, of the label-relevant pattern. However, the interaction between self-
reported explanation, prior knowledge, and discovery of the label-relevant pattern did not reach significance as it did for the
previous analysis of explanation, v2(1, N = 407) = 2.12, p = 0.15, nor did the interaction for basis use, v2(1, N = 407) = 3.67, p = 0.06.
The analysis for the label-irrelevant pattern found that self-reported explaining was associated with higher discovery,
v2(1, N = 407) = 16.63, p < 0.001, and use in categorization, v2(1, N = 407) = 7.84, p < 0.01, and when informative labels were
provided both discovery, v2(1, N = 407) = 10.46, p < 0.01, and use in categorization, v2(1, N = 407) = 12.52, p < 0.01, were lower.
However, the interactions of explanation and informative labels with discovery and use were not significant (discovery:
v2(1, N = 407) = 3.75, p = 0.06; use in generalization: v2(1, N = 407) = 0.024, p = 0.88). A third analysis involving the use of item-
similarity in generalizing category membership revealed that reliance on item-similarity was lower when participants self-
reported explaining, v2(1, N = 407) = 30.71, p < 0.01, replicating the previous findings.
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These findings not only suggest that explaining increases the extent to which participants recruit
prior knowledge to guide discovery, but additionally bear on the selectivity of explanation’s effects.
While explaining increased the rate at which participants discovered one pattern, it had no beneficial
effect – and in fact may have hindered – the discovery of a second pattern.

4. Experiment 2

Experiment 2 extended the findings from Experiment 1 in two important ways. First, the experi-
ment compared a prompt to explain to a more demanding control condition: Participants were
prompted to type their thoughts onscreen as they studied category members in the learning phase.
This tests an alternative interpretation of the findings from Experiment 1: that effects of a prompt
to explain resulted from greater engagement, the need to articulate thoughts in language, or some
other consequence of generating written text during learning.

Second, to provide a more stringent test of whether explaining in fact fails to influence or even im-
pairs additional discovery beyond a single pattern, we increased the number of additional patterns
from one to three. In addition to a label-relevant pattern and a label-irrelevant pattern that accounted
for all observations (100% patterns), the study materials included two patterns that accounted for six
out of eight observations (75% patterns).

4.1. Methods

4.1.1. Participants
Five-hundred-and-fifty-four members of the Amazon Mechanical Turk workplace participated on-

line for monetary compensation. Participation was restricted to users from the United States.

4.1.2. Materials and procedure
4.1.2.1. Study observations. Study observations were modified from those in Experiment 1 (see Fig. 1)
so that body shape (round versus square) and antenna length were each partially diagnostic of cate-
gory membership. Each feature accounted for six of eight study observations (75%), generating a 75%
body pattern and a 75% antenna pattern, respectively. Foot shape served as a label-relevant pattern
that accounted for all observations (100% foot pattern), with arm configuration as a new label-irrele-
vant pattern for all eight robots (100% arm pattern). The arms were either matching (both pointing up
or down at the same angle) or mismatching (one pointing up and one pointing down).

4.1.2.2. Learning phase. As in Experiment 1, participants studied the image of all eight robots for ex-
actly two minutes, with one group prompted to explain why robots 1–4 might be Outdoor (Glorp) ro-
bots and robots 5–8 might be Indoor (Drent) robots, as in Experiment 1. However, in the write thoughts
control condition, participants received the following prompt: ‘‘Write out your thoughts as you study
and learn to categorize robots 1, 2, 3, 4 as Outdoor (Glorp) robots and robots 5, 6, 7, 8 as Indoor (Drent)
robots.’’ In both conditions participants then typed responses onscreen.

4.1.2.3. Test phase. After study participants were asked whether they could tell which category a robot
belonged to by looking at its antennae, arms, body, and/or feet, responding ‘‘Yes,’’ ‘‘Maybe,’’ or ‘‘No.’’ If
they indicated ‘‘Yes’’ or ‘‘Maybe,’’ they were asked to state how the categories differed.

4.2. Results and discussion

4.2.1. Discovery of patterns
Fig. 2d indicates the proportion of participants who discovered each of the four patterns as deter-

mined by a response of ‘‘Yes’’ or ‘‘Maybe’’ as to whether the corresponding features differed across cat-
egories. A log-linear analysis on task (explain, write thoughts), label type (blank, informative) and
discovery of the label-relevant pattern (discovered, not discovered) revealed a three-way interaction,
v2(1, N = 554) = 5.31, p < 0.05, which superseded the effects of task, v2(1, N = 554) = 7.00, p < 0.01, and
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label type, v2(1, N = 554) = 8.64, p < 0.01. As in Experiment 1, discovery of the label-relevant pattern
was highest when participants explained and were provided with informative labels.

Similar log-linear analyses involving task and label type were carried out for the label-irrelevant
pattern, the antenna pattern, and the body shape pattern. Blank labels led to greater discovery of
the label-irrelevant pattern than informative labels, v2(1, N = 554) = 5.02, p < 0.05. In addition, discov-
ery of the body shape pattern was higher in the write thoughts than explain conditions,
v2(1, N = 554) = 5.97, p < 0.05. No other effects were significant.

Despite a more demanding control condition, these results replicate the key finding from Experi-
ment 1 that explanation and prior knowledge interact to guide discovery of a label-relevant pattern.

4.2.2. Number of patterns discovered
Fig. 2e indicates the proportion of participants who did not discover any patterns, who discovered

exactly one pattern, or who discovered multiple patterns (two or more). A log-linear analysis on task
(explain, write thoughts), label type (informative, blank), and number of patterns discovered (none,
one, multiple) revealed effects of task, v2(1, N = 554) = 16.22, p < 0.01, and label type,
v2(1, N = 554) = 13.44, p < 0.01, on how many patterns were discovered. The effect of task and label
type on each discovery outcome was therefore examined using three further log-linear analyses. Par-
ticipants in the write thoughts conditions were more likely to fail to discover any patterns,
v2(1, N = 554) = 3.88, p < 0.05, while those in the explain conditions were more likely to discovery ex-
actly one pattern, v2(1, N = 554) = 9.30, p < 0.01. However, engaging in explanation and writing
thoughts did not differ significantly in promoting discovery of multiple patterns,
v2(1, N = 554) = 2.76, p = 0.10. There were no additional significant effects.

4.2.3. Conditional pattern discovery
Fig. 2f indicates the probability of having discovered another pattern given that the label-relevant

pattern or the label-irrelevant pattern was discovered. Given discovery of the label-relevant (foot) pat-
tern, participants in the explain conditions were less likely to discover additional patterns than those
in the control conditions, v2(1, N = 88) = 6.05, p < 0.05. Similarly, given discovery of the label-irrele-
vant (arm) pattern, participants in the explain conditions were less likely than control participants
to discover additional patterns, v2(1, N = 203) = 4.56, p < 0.05. There were no other significant effects
(all ps > 0.10).

These findings again mirror Experiment 1: A prompt to explain did not boost discovery of addi-
tional patterns, and in fact lowered the probability that participants would discover another pattern
given that either the label-relevant or label-irrelevant pattern was discovered.

4.2.4. Written responses
Because all participants in Experiment 2 were prompted for written responses, we could compare

these to see whether the explain and write thoughts conditions were effectively matched in terms of
overall engagement and attention to category labels, which should roughly be tracked by response
length and mention of category labels, respectively. Some participants left responses blank and are
not included in these analyses; The proportion of participants who left items blank did not differ sig-
nificantly across the explain (15.9%) and the write thoughts conditions (22.2%), v2(1, N = 554) = 3.55,
p = 0.06.

A task by label type ANOVA on the number of words per response revealed that response length did
not differ significantly between the explain conditions (M = 18.1 words, SD = 11.0) and the write
thoughts conditions (M = 19.5 words, SD = 12.5), F(1,443) = 1.51, p = 0.22. However, participants wrote
more when provided with informative labels (M = 20.0 words, SD = 12.6) than with blank labels
(M = 17.4 words, SD = 10.1), F(1,443) = 5.27, p < 0.05. There were no other significant results.

A log-linear analysis found that the proportion of participants who mentioned one or more cate-
gory labels was not significantly influenced by explaining versus writing out thoughts (explain:
64%; write thoughts: 58%; v2(1, N = 447) = 1.14, p = 0.29). However, for participants in both study con-
ditions, informative labels were mentioned more frequently than blank labels (informative: 67%;
blank: 55%; v2(1, N = 447) = 6.78, p < 0.01). These findings make it unlikely that the effects of
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explanation documented above can be attributed to verbalization, greater engagement with the task,
or greater attention to category labels.

4.2.5. Summary
Experiment 2 replicated the key findings from Experiment 1 with a more demanding control con-

dition (‘‘write thoughts’’) that was well matched in terms of engagement and attention to category la-
bels, and with a more complex category structure involving additional patterns. The findings
nonetheless support the claim that explanation increases the extent to which learners consult prior
knowledge in learning, and that explanation has relatively selective effects rather than producing a
global or all-purpose boost to learning.
5. Experiment 3

Experiments 1 and 2 provide evidence that explaining magnifies the role of prior knowledge in pat-
tern discovery, with additional effects (measured in Experiment 1) on how patterns are generalized to
novel category members. However, this raises the question of whether explanation’s role in general-
ization is simply a consequence of its role in discovery (Lombrozo & Gwynne, submitted for publica-
tion; Rehder, 2006; Sloman, 1994). Does explaining guide generalization directly, even when it confers
no advantage for discovery? To address this question we modified the study materials to increase the
rate of discovery and to directly evaluate effects of explanation and prior knowledge on generalization
when multiple patterns are discovered.

Experiment 3 also went beyond the preceding experiments in three notable ways. First, to more
directly assess whether explanation changes the role of prior knowledge in assessing a candidate
pattern’s scope, the experiment included additional measures of generalization that corresponded
more closely to how broadly a pattern was extended. Participants still classified novel items that
pitted patterns against each other, thus tracking the diagnosticity of different features. But Experiment
3 also asked participants how frequently each pattern-related feature occurred in members of each
category – a measure of category validity, or the probability of a feature given category membership.
This provides an additional and potentially more direct measure of beliefs concerning a pattern’s
scope than binary classifications. Second, Experiment 3 counterbalanced whether feet or antennae
featured in the label-relevant pattern (and therefore what the informative labels were), ensuring that
our findings did not result from a unique property of the foot pattern or the Indoor/Outdoor labels.
And finally, the study observations were modified to create uncertainty about whether the label-
relevant pattern subsumed all of the observed cases, allowing us to assess whether explaining recruits
prior knowledge in generalization even when prior knowledge conflicts with an alternative cue to
scope: the number of explained examples to which a pattern is known to apply.

5.1. Methods

5.1.1. Participants
Two-hundred-fifty-eight UC Berkeley undergraduates participated in the lab for course credit and

285 members of the Amazon Mechanical Turk workplace from the United States participated online
for monetary compensation, yielding a total of 543 participants.

5.1.2. Materials
The adapted robots are shown in Fig. 3, and were modified from Experiment 1 to facilitate discov-

ery of the antenna and foot patterns: All members of a given category were given the same feet and
antennae shapes, the size of these features was increased to make them more salient, and the features
were changed to solid black. To manipulate uncertainty concerning the patterns’ scope, the features
for one of the patterns (which in the informative labels condition would always be the label-relevant
pattern) were only shown for three of the four robots in each category, with the feature for the fourth
item in each category hidden behind a box labeled ‘‘unknown.’’ As a result the label-irrelevant pattern
subsumed eight out of eight observations (100%), while the label-relevant pattern only applied to six
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Fig. 3. Study observations from Experiment 3: (a) when the foot pattern was the label-relevant pattern and (b) when the
antenna pattern was the label-relevant pattern.
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out of eight observations (75%) with certainty. We counterbalanced across two sets of materials: (1)
the informative labels were ‘‘Indoor/Outdoor’’ and feet figured in the label-relevant pattern
(Fig. 3a), or (2) the informative labels were ‘‘Receiver/Transmitter’’ and antennae figured in the la-
bel-relevant pattern (Fig. 3b).

‘‘Glorp/Drent’’ labels were used in all blank labels conditions. Although the labels were not infor-
mative with respect to either pattern, we counterbalanced materials to match the informative labels
conditions. This means that in the blank labels condition the ‘‘label-relevant pattern’’ refers to the pat-
tern with potentially narrower scope (two relevant features ‘‘unknown’’) and ‘‘label-irrelevant’’ to the
pattern that applied to all study examples.
5.1.3. Procedure
The learning phase was identical to Experiments 1 and 2, except that participants were informed

before study that information that was not known about the robots would be indicated with an ‘‘un-
known’’ box, and the robots were displayed by category to facilitate pattern discovery (exactly as in
Fig. 3). After the learning phase participants were informed that the robots they had seen were just
eight of the thousands on planet ZARN and made the following judgments. The order of these blocks
was randomly chosen and did not have any effect in later analyses.
5.1.3.1. Pattern discovery. Participants responded ‘‘Yes,’’ ‘‘Maybe,’’ or ‘‘No’’ as to whether there were
differences in the feet, antennae, and colors of robots in each category. They also reported these dif-
ferences and indicated how many of the eight study robots exhibited these differences.
5.1.3.2. Basis for categorization. The original image with the study observations was reproduced on
screen during classification to eliminate memory demands. Participants classified two novel robots
for which the label-irrelevant and label-relevant patterns generated opposite classifications. For
example, one item involved pointy feet (associated with Outdoor/Receiver/Glorp) paired with a short-
er left antenna (associated with Indoor/Transmitter/Drent). The robot’s face and body were concealed
by an ‘‘unknown’’ box such that only the antennae and feet were visible. Confidence ratings on a scale
from 1 (not at all confident) to 7 (extremely confident) were also collected.
5.1.3.3. Beliefs about pattern scope. The original image with the study observations was reproduced on
screen and a robot that was identified as novel was presented behind an ‘‘unknown’’ box such that
only a single feature was visible. For each of the features (a pair of antennae with a shorter left side,
a pair of antennae with a shorter right side, triangle feet, or square feet) participants were asked: (1)
‘‘Out of every 100 Outdoor (Receiver/Glorp) robots on ZARN, how many do you think have antennae
(feet) like the robot above?’’ (2) ‘‘Out of every 100 Indoor (Transmitter/Drent) robots on ZARN, how
many do you think have antennae (feet) like the robot above?’’ Responses were made on a scale from



Fig. 4. Extent to which the label-relevant pattern was used as a basis for generalizing category membership, as a function of
task and label type, in Experiments 3 and 4. (a) Proportion of classifications consistent with label-relevant pattern in
Experiment 3. (b) Average classification rating in Experiment 4, where higher numbers on 1–6 scale indicate greater consistency
with the label-relevant pattern. Error bars correspond to one standard error of the mean.
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0 to 100. An identical block of transfer questions included four features that were novel antennae and
feet following the same abstract patterns: shorter right/left antenna and pointy/flat feet.

5.2. Results and discussion

5.2.1. Pattern discovery
The majority of participants discovered both patterns: Only 11% of participants reported that there

were no feature differences across categories. Task and label type had no significant effects on whether
participants reported that they did not detect any differences (all ps > 0.10, free study/blank labels,
12%; explain/blank labels, 11%; free-study/informative labels, 13%; explain/informative labels, 8%).
These participants are included in subsequent analyses, as excluding them did not change the results.

A majority of participants reported differences in color (80%), with no effect of condition. Partici-
pants noticed that the label-relevant pattern applied to six observations and the label-irrelevant pat-
tern to eight (these were the modal responses), with no significant effects of condition (all ps > 0.10).

5.2.2. Basis for categorization
High rates of discovery made it possible to examine the effects of explanation on the selection of

patterns as a basis for categorization. Fig. 4a indicates the proportion of novel robots (out of two) clas-
sified by using the label-relevant pattern as opposed to the competing label-irrelevant pattern. An AN-
OVA with this proportion as a dependent measure and task (explain, free study) and label type
(informative, blank) as between-subjects factors revealed a significant interaction between task and
label type, F(1,539) = 3.92, p < 0.05, which superseded main effects of task, F(1,539) = 6.05, p < 0.05,
and label type, F(1,539) = 7.51, p < 0.01. Participants who explained with informative labels privileged
the label-relevant pattern to a greater degree than those in any other condition (the explain/blank la-
bels condition, t(262) = 3.30, p < 0.01, d = 0.41, the free study/informative labels condition,
t(260) = 2.98, p < 0.01, d = 0.37, and the free study/blank labels condition, t(267) = 3.77, p < 0.001,
d = 0.46).

While there were additional effects of population and materials, neither factor interacted with the
variables of interest, nor did including them in analyses change the significance of reported results.6
6 The effect of population was as follows: Lab participants tended to generalize the label-relevant pattern more than online
participants, t(541) = 2.70, p < 0.01, d = 0.23. There was also an effect of materials: The label-relevant pattern was more likely to be
generalized when the pattern and labels concerned feet than when they concerned antennae, t(541) = �2.77, p < 0.01, d = �0.24.
However, including population and materials as factors in the reported analysis did not alter the statistical conclusions or reveal any
interactions with task or label type.



Table 3
Inferred pattern scope and relative pattern scope as a function of task and label type (blank versus informative labels), in
Experiment 3. Means are followed by standard deviations.

Inferred pattern scope Blank labels
(Glorp/Drent)

Informative labels
(Outdoor/Indoor or Receiver/Transmitter)

Write thoughts Explain Write thoughts Explain

Label-relevant (75%) 69.2 (30.0) 68.3 (33.1) 63.8 (34.5) 71.3 (31.9)
Label-irrelevant (100%) 80.3 (32.4) 85.4 (28.4) 82.0 (31.3) 77.8 (32.8)

Relative pattern scope �11.1 (32.2) �17.0 (38.5) �18.3 (37.8) �6.5 (33.7)
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This indicates that explanation’s effects depended on whether the labels favored one pattern over the
other, not the particular labels and materials used in the previous studies.
5.2.3. Inferred and relative pattern scope
To represent participants’ inferences about how broadly a pattern in study observations would

extend to the entire category, we computed an aggregate measure of inferred pattern scope from
participants’ judgments about the prevalence of the foot and antenna features in each category.
Each response-about how many unobserved category members (out of 100) would have a particular
feature – serves as an intuitive estimate of a feature’s category validity – the probability that a
member of the category has the feature. To create an aggregate across these judgments, we added
the number of estimated pattern-consistent robots and subtracted the number of estimated pat-
tern-inconsistent robots. So, for example, suppose a participant reported that 90 out of 100 Outdoor
robots have triangular feet and 90 out of 100 Indoor robots have square feet, consistent with the
study pattern, but that 5 out of 100 robots of each type have the opposite type of feet, violating
the study pattern. The average pattern-inconsistent judgment (5) would be subtracted from the
average pattern-consistent judgment (90) to create a composite score of 85 for this participant.7

Inferred pattern scope is presented in Table 3 for the label-relevant and label-irrelevant patterns.
Additionally, Table 3 reports a conversion of these judgments into relative pattern scope, which is cal-
culated as the inferred pattern scope for the label-relevant pattern minus inferred pattern scope for
the label-irrelevant pattern.

Mirroring our analysis of basis for categorization, a task (explain, free study) by label type (blank,
informative) ANOVA was performed on relative pattern scope. Overall, participants believed that the
label-irrelevant pattern (which applied to all eight study observations) had broader scope than the la-
bel-relevant pattern (for which the status of two observations was uncertain), as relative pattern scope
was significantly less than zero, F(1,539) = 84.79, p < 0.01. However, there was one additional signif-
icant effect: an interaction between task and label type. Participants who were prompted to explain
and received informative labels penalized the label-relevant pattern (relative to the label-irrelevant
pattern) less than those in other conditions, t(262) = 2.70, p < 0.01, d = 0.33, presumably because prior
knowledge played a larger role in informing their judgments. Interestingly, in the blank labels condi-
tions there was a marginal trend for explaining to have the opposite effect, t(259) = �1.67, p = 0.097,
d = �0.21, more strongly favoring the label-irrelevant pattern, which accounted for more observed
cases with certainty. Such an effect would be consistent with the idea that explaining increases reli-
ance on all cues to scope.

Finally, recall that the experiment additionally asked participants how many robots would have
novel ‘‘transfer’’ features. However, the majority of participants, 55%, reported that none of the trans-
fer features would be present in any unobserved category member, and so we do not analyze this mea-
sure further.
7 While we could have converted participants’ judgments into an estimate for the probability of a pattern-relevant feature given
category membership, doing so required division and multiplication, so estimates of zero posed a problem. However, the aggregate
measure we employed produced the same pattern of results as calculating category validities by dropping zero scores or replacing
them with 0.5.
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5.2.4. Summary
Experiment 3 examined which of two discovered patterns was utilized in classifying novel category

members and believed to generalize to unobserved category members. Classification judgments
revealed an interaction between task (explain versus free study) and label condition (blank versus
informative), with participants who explained with informative labels using the label-relevant pattern
more often than participants in any other condition, and doing so to a degree that exceeded the
summed, independent effects of explanation and label type. This impact of explaining with informa-
tive labels was mirrored by participants’ beliefs about whether more category members – observed
and unobserved – conformed to the label-relevant or label-irrelevant pattern. These findings mirror
those from Experiments 1 and 2, with generalization driven by a parallel interaction between expla-
nation and prior knowledge. Unlike Experiment 1, however, we can be confident that effects on gen-
eralization were not merely a consequence of discovery, as most participants discovered both
patterns.
6. Experiment 4

Experiments 1–3 found that explaining can influence discovery and generalization by recruiting
the knowledge cued by informative category labels. We proposed a subsumptive constraints account
of explanation as the basis for predicting and interpreting these effects. Specifically, we suggested that
explanations are better to the extent that they invoke patterns with broad scope, and that prior knowl-
edge is recruited to infer the scope of candidate patterns.

Experiment 4 provided a more direct test of the idea that prior knowledge is recruited in explana-
tion as a cue to the scope of candidate patterns. We accomplished this by creating a situation in which
participants possessed semantically-relevant prior knowledge that was not in fact a reliable cue to
scope. If prior knowledge is not a reliable cue to scope, then participants prompted to explain should
be no more likely than participants in control conditions to rely on prior knowledge. To create this sit-
uation, participants in a random labels condition were presented with study examples with informa-
tive labels (e.g., Indoor, Outdoor) that could be related to particular features of the examples (e.g., foot
shape), but – crucially – they were told that the labels were assigned based on the outcome of a ran-
dom coin flip. As a result, the features of observed category members should not be correlated with
category membership, making prior knowledge an unreliable cue to whether patterns that effectively
differentiate study items generalize to the robot population. In this situation, explaining should not
lead to greater reliance on prior knowledge as a cue to scope.

In addition to the random labels condition, we also included a representative labels condition, which
matched previous experiments: Participants were not told how labels were assigned to examples, but
could reasonably assume that study observations were representative of their respective categories.
Including both the random and representative labels conditions also introduced a second cue to the
scope of diagnostic patterns, roughly ‘‘method of label assignment,’’ since diagnostic patterns across
study observations (whether or not they relate to prior knowledge) should only generalize to the pop-
ulation in the representative labels condition. If explanation heightens people’s sensitivity to all cues
to scope – and not just to prior knowledge – then participants in the explain condition should be more
responsive to this manipulation than those in the control condition.

Experiment 4 also aimed to replicate the key findings from Experiment 3 while addressing two po-
tential concerns. First, the task differences found in Experiment 3 are subject to the same concern as
Experiment 1, namely that the control task was less demanding than explanation in some relevant re-
spect. Experiment 4 introduced the stronger control condition used in Experiment 2, requiring partic-
ipants to write out their thoughts during study and therefore matching the explain condition along
more dimensions. Second, the manipulation of label type in Experiment 3 was confounded with the
presence of ‘‘unknown’’ features, which were always involved in the label-relevant pattern. The inter-
action between explanation and label type could therefore have been produced by the presence of the
‘‘unknown’’ features, with a prompt to explain encouraging participants to focus on and draw infer-
ences concerning these features. Experiment 4 avoided this concern by testing whether the interaction
between explanation and label type occurred even when all features were visible.
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Finally, Experiment 4 provided two additional extensions to previous experiments. The comparison
of informative and blank labels in Experiments 1–3 provided one way of examining the effects of prior
knowledge, namely by increasing the knowledge available to some participants. Experiment 4 instead
manipulated the content of available prior knowledge by comparing two sets of informative labels:
Outdoor/Indoor versus Receiver/Transmitter.8 We predicted that explanation and label pair would
interact to determine the extent to which category membership was generalized on the basis of the foot
versus antenna pattern. The second extension in Experiment 4 was to evaluate whether the previous
findings would generalize to learning contexts with extremely sparse observations. Instead of four exam-
ples from each category, Experiment 4 presented participants with only one. Forming generalizations
from such limited information is a valuable inductive capacity, and one for which explanation and prior
knowledge could be especially critical (Ahn, Brewer, & Mooney, 1991).

6.1. Methods

6.1.1. Participants
Six-hundred-and-eighty-two members of the Amazon Mechanical Turk workplace from the United

States participated online for monetary compensation.

6.1.2. Materials and procedure
Participants studied just two robots, one from each category (robots 1 and 8 in Fig. 3), and no fea-

tures were hidden with ‘‘unknown’’ boxes. The learning phase was adapted from Experiment 3 with
the following changes. First, we manipulated learning task through prompts to explain versus write
thoughts, as in Experiment 2. Second, we used only the two label pairs from the informative labels con-
ditions of Experiment 3 (Outdoor/Indoor or Receiver/Transmitter). And finally, we added an additional
factor, label assignment, by changing the cover story about how labels were assigned to produce rep-
resentative labels or random labels.

For all participants, the cover story mentioned that the robots were created by the aliens living on
the planet, and included information about their function that was appropriate to the label pair, either
‘‘Outdoor robots work on outdoor terrain and Indoor robots work inside houses,’’ or ‘‘Receiver robots
receive messages and Transmitter robots send messages.’’

In the representative labels conditions, participants received no additional information. In the ran-
dom labels conditions, participants were additionally told: ‘‘The aliens decide which robots are Out-
door (Receiver) robots and which robots are Indoor (Transmitter) robots when they are
manufactured. When a robot comes off the assembly line at the robot factory, a coin is flipped. If
the coin lands heads, the robot is declared an Outdoor (Receiver) robot. If the coin lands tails, the robot
is declared an Indoor (Transmitter) robot.’’

As in Experiment 3, participants classified robots and answered questions about the prevalence of
features, as detailed below. These two tasks occurred in randomized order after the learning phase.

6.1.2.1. Basis for categorization. Participants classified six different robots, making their ratings on a
six-point scale from ‘‘Definitely an Indoor (Transmitter) robot’’ to ‘‘Definitely an Outdoor (Receiver)
robot.’’ Two robots looked exactly like the original study items, two robots involved the same features
but introduced a conflict between the two patterns (i.e., the feet from one category but the antennae
from the other), and the final two presented the same conflict with novel ‘‘transfer’’ features (i.e., novel
feet that were pointy versus flat, and novel antennae that were longer on the right or left).

6.1.2.2. Inferred pattern scope. Participants answered 16 questions (8 judgments for each category),
which all asked how likely it was that a randomly selected Outdoor/Indoor robot (or Receiver/Trans-
mitter) would have a particular feature, a picture of which was shown. The eight features were: the
two foot shapes observed at study, the two antenna configurations observed at study, two previously
8 This comparison across informative label pairs was technically possible in Experiment 3, which likewise employed both sets of
labels, but would be problematic to interpret given that a pattern’s label-relevance was confounded with its inclusion of an
‘‘unknown’’ feature.
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unseen transfer foot shapes following the foot pattern, and two previously unseen transfer antenna
configurations following the antenna pattern. Responses to these questions were used to calculate in-
ferred pattern scope, as in Experiment 3.

6.2. Results

We first examine the effects of explanation and label assignment on categorization and inferred
scope of the label-relevant and label-irrelevant patterns, collapsing across the two label sets. We then
consider individual effects of the Outdoor/Indoor versus Receiver/Transmitter label pairs and charac-
teristics of participants’ written responses.

6.2.1. Basis for categorization
Fig. 4b reports the average ratings for the categorization task, with responses coded such that high-

er numbers correspond to judgments consistent with the label-relevant pattern. This measure was
analyzed in an ANOVA with task (write thoughts, explain) and label assignment (random, representa-
tive) as independent variables. The critical finding was a task by label assignment interaction,
F(1,678) = 5.40, p < 0.05, which superseded a main effect of label assignment, F(1,678) = 27.51,
p < 0.001. Relative to the write thoughts condition, explaining promoted categorization consistent
with the label-relevant pattern in the representative labels condition, t(341) = 2.35, p < 0.05, d = 0.25,
but had no effect in the random labels condition, t(337) = 0.97, p = 0.33, d = 0.11. Moreover, the effect
of label assignment was greater when participants engaged in explanation, t(332) = 5.21, p < 0.001,
d = 0.58, than when they wrote their thoughts, t(357) = 2.28, p = 0 < 0.05, d = 0.24. These results were
not changed by including label pair (Outdoor/Indoor, Receiver/Transmitter) as a between-subjects fac-
tor and categorization item (original observations, conflict items pitting patterns against each other,
conflict items with novel features) as a within-subjects factor in the analysis.

These findings are consistent with the prediction that explanation does not recruit prior knowledge
as a basis for judgment when it is an unreliable cue to scope (i.e., in the random labels condition), and
also the prediction that explanation heightens participants’ sensitivity to additional cues to scope – in
this case, the method of label assignment.

6.2.2. Inferred pattern scope
Table 4 reports participants’ beliefs about the scope of the label-relevant and label-irrelevant pat-

terns. These were calculated using the same procedure as Experiment 3 in order to reflect participants’
implicit beliefs about how likely the patterns in study observations would be to apply to the entire
category.

We analyzed inferred pattern scope as the dependent measure in a mixed ANOVA, treating pattern
type (label-relevant, label-irrelevant) as a within-subjects factor, and task (write thoughts, explain)
and label assignment (random, representative) as between-subjects factors. There was a main effect
of label assignment, F(1,678) = 22.93, p < 0.001, with higher ratings of pattern scope in the representa-
tive than random labels conditions, and a main effect of pattern type, F(1,678) = 92.26, p < 0.001, with
higher ratings for the label-relevant pattern. However, these effects were qualified by three two-way
interactions. First, as predicted, there was an interaction between task and label assignment,
F(1,678) = 9.49, p < 0.01, with participants prompted to explain more sensitive to the manipulation of
label assignment than those in the control condition: In the explain condition, representative labels
Table 4
Inferred pattern scope, relative pattern scope, and pooled pattern scope as a function of task and label assignment (random versus
representative labels), in Experiment 4. Means are followed by standard deviations.

Inferred pattern scope Random labels Representative labels

Write thoughts Explain Write thoughts Explain

Label-relevant pattern 31.7 (60.2) 27.2 (66.8) 37.4 (58.1) 46.7 (62.7)
Label-irrelevant pattern 28.2 (60.4) 15.9 (53.6) 28.3 (54.6) 29.8 (58.6)
Pooled pattern scope 29.9 (60.3) 21.6 (60.2) 32.9 (56.3) 38.2 (60.6)
Relative pattern scope 3.5 (60.3) 11.3 (60.6) 9.1 (56.4) 16.9 (60.7)
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led to judgments of greater pattern scope than random labels, t(322) = 5.83, p < 0.001, d = 0.65, with no
effect of labels in the write thoughts condition, t(356) = 1.04, p = 0.30, d = 0.11 (see ‘‘pooled pattern
scope’’ in Table 4). Second, there was an interaction between task and pattern type, F(1,678) = 15.02,
p < 0.001, with participants who explained more strongly differentiating the scope of the label-relevant
and label-irrelevant patterns. Finally, label assignment also interacted with pattern type,
F(1,678) = 7.10, p < 0.01, with the two patterns more strongly differentiated in the representative labels
conditions than in the random labels conditions. Including kind of feature (original, transfer) and label
pair in analyses did not change these results.

These findings again support the prediction that explanation increases participants’ sensitivity to a
novel cue to scope: method of label assignment. The interaction between task and pattern type is also
consistent with our previous results in that participants who explained were more sensitive to prior
knowledge than those who wrote thoughts. However, we did not find that explanation’s effects on
prior knowledge were eliminated with random labels (which would have been reflected in a three-
way interaction between task, pattern type, and label assignment) to mirror the predictions and find-
ings for categorization. Instead, participants inferred a broader scope for the label-relevant pattern
than the label-irrelevant pattern for both explain conditions.
6.2.3. Effects of label pair
The representative labels conditions in Experiment 4 varied from the preceding experiments in

using two different label pairs in otherwise identical conditions. These conditions allow us to assess
whether explanation and prior knowledge interact when the content rather than amount of prior
knowledge is manipulated.

Average categorization ratings were therefore analyzed with a task (write thoughts, explain) by la-
bel pair (Indoor/Outdoor, Receiver/Transmitter) ANOVA, but restricted to the representative labels
conditions and with ratings coded such that higher numbers indicated consistency with the foot pat-
tern. This analysis revealed main effects of task, F(1,678) = 5.47, p < 0.05, and label pair,
F(1,678) = 100.16, p < 0.001, and a task by label pair interaction, F(1,678) = 4.09, p < 0.05. Average cat-
egorization ratings were higher (more consistent with the foot pattern) for the two Outdoor/Indoor
labels conditions (write thoughts: M = 4.6, SD = .5, explain: M = 4.6, SD = .6), and lower for the Recei-
ver/Transmitter labels (write thoughts: M = 4.2, SD = .6, explain: M = 3.9, SD = .5). Although labels af-
fected categorization judgments for participants in both groups (write thoughts: t(356) = 5.95,
p < 0.001, d = 0.63, explain: t(322) = 8.07, p < 0.001, d = 0.90), the effect was still more pronounced
for those prompted to explain.

Analyses of inferred pattern scope mirrored these findings. Table 5 reports inferred pattern scope
for the foot and antenna patterns in the representative labels conditions, as well as relative pattern
scope, the difference between them, with positive numbers corresponding to higher relative scope
for the foot pattern. A task � label pair ANOVA on relative pattern scope found a main effect of label
pair, F(1,678) = 53.79, p < 0.001, and a task by label pair interaction, F(1,678) = 16.00, p < 0.001. Partic-
ipants in both study conditions inferred a broader scope for feet than for antennae with the Indoor/
Outdoor labels, and the reverse pattern held true with Receiver/Transmitted labels, but the magnitude
of the difference across label pairs was greater for participants prompted to explain. Nonetheless, the
effect of label pair was still independently significant in the write thoughts condition, t(356) = 2.45,
p < 0.05, d = 0.26.
Table 5
Inferred pattern scope, relative pattern scope, and pooled pattern scope as a function of task and label pair, in the representative
labels conditions of Experiment 4. Means are followed by standard deviations.

Inferred scope Receiver/transmitter labels Outdoor/indoor labels

Write thoughts Explain Write thoughts Explain

Foot pattern 37.6 (36.2) 40.8 (35.6) 52.4 (36.3) 63.7 (32.2)
Antenna pattern 41.5 (36.9) 51.3 (36.4) 40.1 (39.9) 38.4 (37.5)
Pooled scope 39.6 (36.6) 46.1 (36.0) 46.3 (38.1) 51.1 (35.0)
Relative scope �3.9 (31.4) �10.4 (34.) 12.3 (37.3) 25.3 (33.6)
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6.2.4. Written responses
Analyses of written responses were restricted to participants who did not leave responses blank;

the proportion of participants who did so did not differ significantly across conditions (all ps > 0.10)
and was less than 1%. An ANOVA on response length with task and label assignment as between-
subjects factors revealed that typed responses were longer when participants were asked to write
thoughts than to explain (explain: M = 28.2, SD = 15.5; write thoughts: M = 33.4, SD = 18.5;
F(1,678) = 15.6, p < 0.001), substantiating the trend observed in Experiment 2. Responses were also
longer in the representative labels conditions (M = 32.21, SD = 18.1) than the random labels conditions
(M = 29.7, SD = 16.5), F(1,678) = 3.84, p < 0.05.

The proportion of participants who mentioned a label was influenced by a task by label assignment
interaction, v2(1, N = 682) = 4.82, p < 0.05. When the labels were randomly assigned, participants in
the explain condition mentioned them less frequently than participants who wrote out thoughts (ex-
plain: 34%; write thoughts: 47%, v2(1, N = 339) = 5.80, p < 0.05), while no such difference existed for
representative labels (explain: 41%; write thoughts: 37%; v2(1, N = 343) = 0.47, p = 0.51).

These findings suggest that the effects of explanation on generalization reported above are unlikely
to derive from differences in general engagement or attention to labels across conditions.
6.2.5. Summary
Experiment 4 went considerably beyond the previous experiments in manipulating a novel cue to

the scope of patterns across study observations: whether observed category members had features that
could be assumed to correlate with category membership or were assigned labels at random. When la-
bels were assigned at random, such that prior knowledge was no longer a reliable cue to the scope of
diagnostic patterns, prior knowledge differences between the explain and write thoughts conditions
were eliminated when it came to categorization. The manipulation of label assignment also interacted
with explanation analogously to the previous manipulations of prior knowledge: Participants
prompted to explain were more sensitive to this cue to pattern scope, with greater differentiation of
the representative and random conditions for both the classification of novel robots and the extension
of observed features to unobserved category members. The fact that explanation had a comparable im-
pact on a quite distinct cue to scope bolsters our interpretation that effects of informative labels in the
preceding experiments are best understood as a consequence of the fact that explaining directs learners
to assess patterns’ scope, where the number of current observations consistent with a pattern, prior
knowledge, and how categories are formed (i.e., method of label assignment) are all cues to scope.

Finally, Experiment 4 also addresses potential concerns about the preceding results. First, key find-
ings from Experiment 3 replicated without ‘‘unknown’’ features, with a stronger control condition, and
with sparser data, showing that explaining can promote the recruitment of prior knowledge to guide
generalization with just one or two category observations. Second, Experiment 4 found that label type
had a significant effect on participants in control conditions. This finding helps address a concern with
the previous experiments – that superadditive effects of explanation and labels are restricted to con-
ditions under which participants do not spontaneously consult labels in the absence of explanation.
This alternative explanation is less plausible, since explanation and label type had superadditive ef-
fects even when label type had significant effects independently.
7. General discussion

Four experiments examined how generating explanations and possessing prior knowledge (cued
by informative category labels) influenced what participants learned and inferred about novel catego-
ries from examples. Experiments 1 and 2 found that explaining increased the extent to which partic-
ipants relied on prior knowledge in learning, leading to elevated discovery of a pattern related to the
informative labels when they were provided. However, the effects of explaining were selective:
Explaining increased the rate at which participants discovered one pattern without increasing the dis-
covery of additional patterns. In fact, when just those participants who had discovered at least one
pattern were considered, discovery of additional patterns was lower for participants prompted to
explain than for those in control conditions. These results were replicated in Experiment 2 despite
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the inclusion of four patterns and a more demanding control condition that required participants to
write their thoughts during study.

Experiments 3 and 4 examined whether explaining could directly impact which patterns were gen-
eralized beyond study observation. Although seeking explanations had no impact on pattern discovery
(which was near ceiling), participants prompted to explain with informative labels were more likely to
categorize novel items using the label-relevant pattern, and more likely to believe that the label-rel-
evant pattern applied to unobserved category members. Experiment 4 additionally found that explain-
ing increased sensitivity to an additional cue to the scope of patterns across observed category
members: whether category members were drawn from randomly assembled populations.

Jointly, the results from Experiments 1–4 provide strong support for the idea that explaining can
increase the extent to which learners consult prior knowledge to guide discovery and generalization.
The findings also shed light on the mechanisms by which explaining generates these effects. First, sev-
eral results challenge the idea that explaining affects learning through a general increase in attention
or engagement, or even through a global increase in the extent to which people seek patterns. Instead,
effects of explanation were quite selective (Experiments 1–2), and extended to cases in which multiple
patterns were available to learners and needed to be preferentially applied to new cases (Experiment
3–4). Second, the results support our proposal that explaining increases learners’ consultation of prior
knowledge as a cue to patterns’ scope. Explaining magnified the role of informative labels on estimates
of a label-relevant pattern’s scope in Experiments 3 and 4, with a parallel impact on a completely dif-
ferent cue to scope (random versus representative category labels) in Experiment 4.

We interpret these findings in terms of the subsumptive constraints account. To briefly review, the
account maintains that people prefer explanations that appeal to patterns with broad scope, with the
result that explaining constrains learners to identify patterns and make use of cues to patterns’ scope.
Our experiments manipulated two distinct cues to scope, prior knowledge (through informative la-
bels) and method of label assignment (random versus representative), finding the predicted effects
of explanation in each case. Combined with previous work (Williams & Lombrozo, 2010) demonstrat-
ing comparable effects of explanation on a third cue to scope – the number of explained observations
to which a pattern applies – there is good reason to think that explanation’s effects are truly tracking
cues to scope, and not alternative features of each manipulation.

While an important relationship between explanation and prior knowledge is often endorsed (for
discussion see Lombrozo, 2006), little empirical work has tried to characterize which knowledge is
consulted and why it is brought to bear through explanation. One reason may be the challenge posed
in relating explanation to the range of beliefs that count as ‘‘prior knowledge’’. The current work sug-
gests that explaining will invoke knowledge relevant to evaluating whether an observed pattern ex-
tends to novel cases and contexts. But explaining should play a smaller role in deploying other
kinds of knowledge, such as idiosyncratic facts about examples or information that serves a purely
mnemonic purpose. The present account also predicts that the influence of prior knowledge must
trade-off against other cues to scope, which suggests that when alternative cues to scope are very
strong, explaining could actually decrease the role of prior knowledge in learning. This paradoxical pre-
diction can make sense of an otherwise puzzling feature of explanation: that explaining an anomalous
observation can sometimes lead to ‘‘explaining away’’ and the preservation of current beliefs (Chinn &
Brewer, 1993; see also Bott & Murphy, 2007; Hayes, Foster, & Gadd, 2003), but at other times presage
deep conceptual change (e.g., Amsterlaw & Wellman, 2006).

7.1. Alternative explanations

Our experiments were designed to assess and rule out a few alternative explanations for the re-
sults. First, effects of explanation could potentially be attributed to task demands if explanation
prompts somehow communicated to participants that the experimenter intended for them to find a
pattern or take category labels seriously. Counter to this view, however, spontaneous explanation in
the control condition from Experiment 1 had comparable effects to prompted explanation, and explain
and free study participants who did not discover a pattern were equally likely to believe one existed.

More generally, while each individual experiment is prone to alternative interpretations, these are
rendered less plausible by the systematic effects of explanation and prior knowledge across four
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experiments that differed in various ways. For example, in Experiments 1 and 3, participants in the
free study condition could have been less engaged and paid too little attention to the labels to benefit
from prior knowledge, with explaining simply increasing attention or engagement past some thresh-
old where prior knowledge could have an effect. But the key results from these experiments were rep-
licated when using the more engaging control condition of typing thoughts (Experiments 2 and 4),
where we found that participants in the explain and control conditions were equally likely to mention
informative category labels, and when simplified stimuli in Experiments 3 and 4 reduced the atten-
tional resources required to notice patterns and labels.

We do acknowledge that the experiments can only provide indirect evidence that explaining
recruited prior knowledge in the service of assessing patterns’ scope. However, it is notable that
explaining has had comparable effects on multiple cues to scope: the availability of prior knowledge
(Experiments 1–3), the content of prior knowledge (Experiment 4), whether category labels were
randomly assigned (Experiment 4), and the number of study observations conforming to a pattern
(Williams & Lombrozo, 2010). This convergence supports our appeal to scope. In other words, we take
the broad scope of our scope explanation as evidence in its favor.

7.2. Implications for category learning

The current findings shed light on how explaining could play a distinctive role in category learning,
much as classification and inference learning each do (Chin-Parker et al., 2006; Markman & Ross,
2003). In particular, our account predicts that explaining should encourage learners to focus on pat-
terns underlying category membership that are expected to have broad scope. When scope is assessed
only in terms of the examples encountered in training, then explaining should result in the reduction
of classification error on examples, a core mechanism underlying category learning (Kruschke, 2008).
In fact, the findings from Williams and Lombrozo (2010) are consistent with the idea that explanation
can have this effect, and prior knowledge likely does influence learning by reducing training error
(Rehder & Murphy, 2003). However, the number and proportion of study items accommodated by a
given pattern is only one cue to scope. The consequences of explaining category membership could
therefore diverge from error-driven learning when learners have access to additional cues to scope,
such as prior knowledge. Along these lines, we have found that prompting 5-year-olds to explain
can actually make them less likely than children in a control condition to favor a pattern that accounts
for all observations, but is inconsistent with prior knowledge (Walker, Williams, Lombrozo, & Gopnik,
2012; Walker, Williams, Lombrozo, & Gopnik, submitted for publication). The findings from Experi-
ment 3 have a similar flavor: Explaining led adults to less strongly favor a pattern that accounted
for all observations with certainty over an alternative that accounted for only 75%, but was more con-
gruent with informative category labels.

It is also possible that spontaneous explanation during learning can help explain characteristics of
learning in prior research. In particular, explaining could be a cause or consequence of the learning
mode employed, shifting learners towards a rule-based system (Ashby & Maddox, 2004; Goodman,
Tenenbaum, Feldman, & Griffiths, 2008; Nosofsky, Palmeri, & McKinley, 1994), or to prototypical
rather than exemplar-based representations (Griffiths, Canini, Sanborn, & Navarro, 2007; Smith &
Minda, 1998; Vanpaemel & Storms, 2008). More broadly, explaining could constrain learning to be
more explicit (Maddox & Ing, 2005; Mathews et al., 1989), intentional (Love, 2002) and reliant on lan-
guage and abstract construals (Lupyan & Rakison, 2007; Trope & Liberman, 2010). Undocumented ef-
fects of spontaneous explanation are especially plausible in cases where learning is sensitive to prior
knowledge and cannot be fully explained through the reduction of classification error (for examples,
see Bott, Hoffman, & Murphy, 2007; Catrambone, 1998; Kim & Rehder, 2010). Our demonstration of
the powerful role of explanation in category learning indicates the value of not only experimentally
manipulating explanation, but also tracking spontaneous explanation through verbal protocols or
post-test questions (as in the explanation self-report measure from Experiment 1).

Spontaneous explanation might also play a role in cases where categorical judgments diverge from
statistical learning. For example, Spalding and Murphy (1999) found that participants who learned
knowledge-consistent (‘‘integrated’’) categories were less sensitive to the frequencies of category fea-
tures than those who learned arbitrary (‘‘nonintegrated’’) categories when it came to judgments of
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typicality (see also Murphy & Allopenna, 1994; Wisniewski, 1995), consistent with the effect in
Experiment 3, where participants who explained with informative labels were least sensitive to the
difference in frequency between the features that appeared in the 75% and 100% patterns when it
came to inferring pattern scope. However, Spalding and Murphy (1999) also found that participants
who learned knowledge-consistent categories were more accurate in their estimates of feature fre-
quencies when they were simply asked to report them. One speculative possibility is that judgments
that require people to relate features to each other or to category membership, such as categorization
and typicality ratings, are more likely to trigger spontaneous explanation than judgments that involve
descriptive reporting, such as feature frequency estimates (see also Murphy & Medin, 1985; Rips,
1989). Spontaneous explanation could also play a larger role in more open-ended and constructive
categorization tasks, such as Wisniewski and Medin’s (1994) paradigm, which required participants
to construct novel features and rules to differentiate complex stimuli, and to explain while they did so.

Although explanation likely contributes to previous findings concerning the role of prior knowl-
edge in category learning, our findings also provide suggestive evidence that explaining and prior
knowledge can play quite different roles when it comes to learning material that is knowledge-irrel-
evant. Many studies have found – perhaps surprisingly – that learning a category that is only partially
consistent with prior knowledge does not hinder learning of knowledge-irrelevant features, and may
even generate improvements relative to learning categories that are not related to prior knowledge
(Heit, Briggs, & Bott, 2004; Kaplan & Murphy, 2000; see Murphy (2002) for discussion). In our own
data, there was a marginal effect (in Experiment 1, p = .062) for participants who received informative
labels to be more likely than those who received blank labels to discover more than one pattern, and a
significant effect where those who discovered the label-irrelevant pattern were more likely to have
also discovered the label-relevant pattern, consistent with the idea that prior knowledge facilitates
learning of knowledge-relevant and knowledge-irrelevant patterns. In contrast, explaining did not in-
crease the rate at which participants discovered more than one pattern, and in fact decreased the
probability that a second pattern was discovered given discovery of an initial pattern (Experiments
1 and 2). These findings suggest that explanation and prior knowledge might impose unique con-
straints on learning. Where explaining recruits constraints that privilege patterns with broad scope
(potentially at the expense of other patterns or kinds of structure), prior knowledge could have
mnemonic or other processing benefits that extend to knowledge-irrelevant features.

Of course, these are empirical hypotheses in need of further support. An additional dimension
worth exploring concerns the nature of the subsumptive relationship between an explanation and cat-
egory membership. Here we have considered cases in which patterns are better or broader if they ac-
count for the category membership of more items. An alternative sense of scope, however, concerns
the number of features of individual members that can be explained by appeal to category member-
ship. For example, one pattern (pointy versus flat feet) could successfully differentiate many robots,
while another pattern (features relevant to working in space versus underwater) could apply to fewer
robots, but explain a larger number of features for those robots (e.g., why they are a particular color,
made of a particular material, and of a particular size). Research on knowledge effects in category
learning has varied both the number of items and the number of features to which themes apply; Sim-
ilar variation would be fruitful to examine within our paradigm, especially as a way to understand
whether and how these two factors trade-off when learners explain. It is also likely that not all items
or features are equal when it comes to assessing scope. For example, explaining could favor patterns
that account for more diverse cases (Kim & Keil, 2003) or more ideal cases (Barsalou, 1985), even when
doing so does not account for the largest number of items or features.

We also expect that the content of explanation prompts (i.e., what it is that people actually explain)
should influence which patterns are relevant, and therefore which patterns are discovered and eval-
uated for scope. In our experiments, participants explained why an object belonged to one category
(as opposed to another). Successful explanations therefore invoked patterns that were ‘‘diagnostic’’
in the sense that they identified features that differentiated members from the two categories, and
our experiments correspondingly assessed whether diagnostic patterns were discovered and general-
ized. However, categories can involve additional patterns that could be targeted by other explanation
prompts. For example, having participants explain why two features might co-occur in members of a
given category should instead affect the discovery and generalization of ‘‘co-occurrence’’ patterns,
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with the relevant sense of scope concerning which co-occurrences are likely to generalize beyond
observed cases to unobserved category members.

Nonetheless, explanation might not have comparable effects for all kinds of scope. People prefer
explanations with broader scope in the sense that the explanation can account for more actual phe-
nomena (e.g., Preston & Epley, 2005) or actual observations (e.g., Read & Marcus-Newhall, 1993),
but people prefer explanations with narrow ‘‘latent scope’’ – that is, that are committed to fewer po-
tential observations that have not been made (Khemlani, Sussman, & Oppenheimer, 2011). An impor-
tant question for future research is whether and when this preference for narrow latent scope
manifests in effects of explanation on learning. One possibility is that a benefit for patterns with broad
scope will be tempered when those patterns involve a commitment to entirely new kinds of observa-
tions (e.g., a novel kind of feature that has not been observed, such as hats on robots) as opposed to
new instances of features that have already been observed (e.g., pointy feet on unobserved robots).

Finally, our account generates the counterintuitive prediction that under some conditions, explain-
ing will hinder category learning. In particular, explaining could derail effective learning when cate-
gories lack underlying patterns or involve ‘‘unexplainable’’ exceptions. Under these conditions,
explaining could reinforce broad patterns that make sense in light of prior knowledge at the expense
of effectively tracking the world. Our ongoing research supports this prediction (Williams, Lombrozo,
& Rehder, 2010, 2011, submitted for publication), and helps explain why participants in control con-
ditions may not have always explained spontaneously or engaged in equivalent processing: it is not
always beneficial to do so (see also Berthold et al., 2011; Kuhn & Katz, 2009).
7.3. Implications for education

In the introduction we identified several proposals concerning the effects of explanation on learn-
ing, including the ideas that explaining can increase a learner’s attention or motivation (e.g., Siegler,
2002) or help identify gaps in understanding (e.g., Chi et al., 1989; Nokes, Hausmann, VanLehn, &
Gershman, 2011), among others. The current work was not designed to directly challenge these
accounts or arbitrate between them. In fact, we see our findings as importantly complementary. If
we are correct that explaining imposes a set of criteria for what constitutes a good explanation, and
that these criteria constrain discovery and generalization, then the factors we identify should inform
how learners direct their attention, what they are motivated to discover, which gaps in understanding
are most problematic, what kinds of inferences must be drawn, and so on. An important direction for
future research is thus to combine the richness of past research on explanation and learning from
education with the kind of experimental control afforded by artificial category learning, allowing
the selectivity of explanation’s effects to be studied in more complex and real-world environments.

Our account can also shed new light on past findings from self-explanation. For example, previous
research has noted that one consequence of self-explanation is increased awareness of principles and
laws, whether learning about physics (Chi et al., 1989), probability (Renkl, 1997), or arithmetic
(Rittle-Johnson, 2006). A subsumptive constraints account helps explain why this is the case: Con-
structing successful explanations for a fact or problem solution should direct learners towards broad
patterns, and principles and laws are prime examples of such patterns. However, our account also
predicts pedagogically relevant conditions under which subsumptive constraints on explanation can
impair learning. For example, for students without the requisite background to generate accurate
generalizations, or who have not encountered enough counterevidence to erroneous beliefs for such
observations to trump prior knowledge as a cue to scope, a prompt to explain could reinforce existing
misconceptions (see also Walker et al., 2012, submitted for publication; Williams et al., 2010, 2011,
2012). Our findings can therefore inform future research aimed at testing the conditions under which
explanation is most beneficial for learning in educational contexts.
8. Conclusion

Four experiments on learning categories provided evidence that explanation and prior knowledge
interact in promoting the discovery and generalization of patterns underlying category membership.
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The findings support a subsumptive constraints account of explanation and learning, according to
which explaining drives learners to seek underlying patterns and to consult prior knowledge in
assessing the scope of such patterns – that is, how broadly the patterns apply within and beyond study
observations. Our findings and account provide insight into how constraints on explanation influence
the role of observations and prior knowledge in guiding learning and generalization, and suggest that
explaining can act as a mechanism for bringing prior knowledge to bear in learning.
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