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Abstract

Research in education and cognitive development suggests that explaining plays a key role in

learning and generalization: When learners provide explanations—even to themselves—they learn

more effectively and generalize more readily to novel situations. This paper proposes and tests a

subsumptive constraints account of this effect. Motivated by philosophical theories of explanation,

this account predicts that explaining guides learners to interpret what they are learning in terms of

unifying patterns or regularities, which promotes the discovery of broad generalizations. Three

experiments provide evidence for the subsumptive constraints account: prompting participants

to explain while learning artificial categories promotes the induction of a broad generalization under-

lying category membership, relative to describing items (Exp. 1), thinking aloud (Exp. 2), or free

study (Exp. 3). Although explaining facilitates discovery, Experiment 1 finds that description is more

beneficial for learning item details. Experiment 2 additionally suggests that explaining anomalous

observations may play a special role in belief revision. The findings provide insight into explana-

tion’s role in discovery and generalization.

Keywords: Explanation; Self-explanation; Learning; Transfer; Generalization; Category learning;

Anomalies

1. Introduction

Seeking explanations is a ubiquitous part of everyday life. Why is this bus always late?

Why was my friend so upset yesterday? Why are some people so successful? Young chil-

dren are notorious for their curiosity and dogged pursuit of explanations, with one ‘‘why?’’

question followed by another. Equally curious scientific researchers might wonder: Why is

explaining so important?
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Psychologists and philosophers have independently proposed that in explaining observa-

tions about the past, we uncover underlying structure in the world, acquiring the knowledge

to predict and control the future (e.g., Heider, 1958; Quine & Ullian, 1970; Lombrozo &

Carey, 2006; Lombrozo, 2006; but see Keil, 2006). For example, in explaining a friend’s

behavior, you might come to appreciate the extent of his or her ambition, which informs

expectations about future actions. Moreover, explanations have been posited as central,

organizing elements within intuitive theories (Carey, 1985) and conceptual representations

(Carey, 1991; Lombrozo, 2009; Murphy & Medin, 1985), suggesting that the process of

explaining may be intimately related to learning concepts and theories.

Everyday experiences provide many illustrations of explanation’s effects on learning. In

the course of explaining a concept or a problem’s solution to another person, the explainer

may generate a new insight or acquire a deeper understanding of the material, despite not

having received any additional input from the world. Attempting to explain what one is

reading or learning about similarly seems to promote learning, beyond simply memorizing

or passively encoding.

In fact, empirical research in education and cognitive development confirms that the pro-

cess of explaining can foster learning. There are benefits in explaining to others (Roscoe &

Chi, 2007, 2008), and even in explaining to oneself. This phenomenon is known as the self-
explanation effect and has been documented in a broad range of domains: acquiring proce-

dural knowledge about physics problems (Chi, Bassok, Lewis, Reimann, & Glaser, 1989),

declarative learning from biology texts (Chi, de Leeuw, Chiu, & LaVancher, 1994), and

conceptual change in children’s understanding of number conservation (Siegler, 1995,

2002) and theory of mind (Amsterlaw & Wellman, 2006), to name only a few. Compared

with alternative study strategies like thinking aloud, reading materials twice, or receiving

feedback in the absence of explanations (e.g., Amsterlaw & Wellman, 2006; Chi et al.,

1994; Siegler, 2002; Wong, Lawson, & Keeves, 2002), self-explaining consistently leads to

greater learning. Notably, the greatest benefit is in transfer and generalization to problems

and inferences that require going beyond the material originally studied. Explanation’s role

in learning and generalization is further underscored by a tradition of research in machine

learning and artificial intelligence known as explanation-based learning (DeJong &

Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986).

Why is the process of explaining so helpful for learning, and especially for deep learning:

acquiring knowledge and understanding in a way that leads to its retention and use in future

contexts? Researchers have generated a number of proposals about the mechanisms that

underlie explanation’s beneficial effects on learning. These include the metacognitive con-

sequences of engaging in explanation (such as identifying comprehension failures), explana-

tion’s constructive nature, explanation’s integration of new information with existing

knowledge, and its role in dynamically repairing learners’ mental models of particular

domains (for discussion, see Chi et al., 1994; Chi, 2000; Siegler, 2002; Crowley & Siegler,

1999; Rittle-Johnson, 2006). Generating explanations may also scaffold causal learning by

focusing attention on cases for which the outcome is known (Wellman & Liu, 2007), and by

encouraging learners to posit unobserved causes (Legare, Gelman, & Wellman, in press;

Legare, Wellman, & Gelman, 2009). Given the diversity of the processes that can underlie
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learning (Nokes & Ohlsson, 2005), it is likely that explanation influences learning via multi-

ple mechanisms.

1.1. Exploring the role of explanation in generalization

In this study, we explore a subsumptive constraints account of explanation’s effects on

learning, which provides an account of why explaining particularly facilitates transfer and

generalization. The hypothesis is that engaging in explanation exerts constraints on learn-

ing, which promote the discovery of broad generalizations that underlie what is being

explained. This hypothesis is motivated by work on the structure of explanations. By the

structure of explanations, we mean the relationship that must hold between an explana-

tion and what it explains for it to be genuinely explanatory. Little research in psychology

has addressed this question directly (see Lombrozo, 2006), but a rich tradition from phi-

losophy provides candidate theories that offer useful starting points for psychological the-

orizing (see Woodward, 2009, for a review of philosophical accounts of scientific

explanation).

Accounts of explanation from philosophy have typically emphasized logical, probabilis-

tic, causal, or subsumptive relationships between the explanation and what it explains.

Although there is no consensus, we focus on pattern subsumption theories, which have been

advocated in past research on explanation within psychology (Lombrozo & Carey, 2006;

Wellman & Liu, 2007). Pattern subsumption theories propose that the defining property of

an explanation is that it demonstrates how what is being explained is an instance of a gen-

eral pattern (for discussion, see Salmon, 1989; Strevens, 2008). For example, in explaining

a friend’s current cold by appeal to the contraction of a germ from another person, a specific

event (Bob’s cold) is subsumed as an instance of a general pattern (the transmission of

germs produces illnesses in people). A subset of these accounts further emphasizes unifica-
tion: the value of explaining disparate observations by appeal to a single explanatory pattern

(e.g., Friedman, 1974; Kitcher, 1981, 1989). The general pattern that germ transmission

produces illnesses not only accounts for Bob’s cold but also a diverse range of other data

about the occurrence and spread of diseases.

Subsumption and unification accounts of explanation predict the privileged relationship

between explanation and generalization that is demonstrated by the self-explanation effect.

If the explanations people construct satisfy the structural demands of subsumption, then the

process of explaining will exert particular constraints on learning: The beliefs and inferences

generated will be those that play a role in demonstrating how what is being explained con-

forms to a general pattern. Explaining will therefore guide people to interpret observations

in terms of unifying regularities, and the information constructed in successful explanations

will result in the induction or explicit recognition of generalizations that underlie what is

being explained. Discovering and explicitly representing such generalizations can in turn

facilitate transfer from one learning context to novel but relevant contexts. For example,

attempting to explain an instance of a person’s behavior might lead to an explanation that

posits an underlying personality trait, providing the basis to generalize about that person in

a range of new situations.
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Although it may seem intuitive that explanations unify and subsume, this approach to

understanding the effects of explanation on learning and generalization has not been fully

developed, nor has it been tested empirically. Previous work has typically emphasized the

ways in which explanation contributes to processes known to facilitate learning, such as

metacognitive monitoring and strategy or belief revision. Our account complements this

work by taking a different tack, emphasizing that the process of explaining may exert partic-

ular constraints on the knowledge constructed in learning by virtue of the properties of

explanations. The specific constraints we explore are those motivated by pattern subsump-

tion and unification theories of explanation. In sum, the key, novel idea in a subsumptive

constraints account is that explaining facilitates generalization because satisfying the struc-

tural properties of explanations exerts constraints that drive learners to discover unifying

regularities, allowing transfer to novel contexts.

To test our hypothesis that explaining promotes the discovery of unifying regularities, we

employ a task from cognitive psychology: learning artificial categories from positive exam-

ples. Exploring the role of explanation in the context of category learning has two important

benefits. First, there are already reasons, both theoretical and empirical, to suspect an impor-

tant relationship between explanation and category structure. Previous work on category

learning suggests that categories are judged more coherent to the extent they support expla-

nations (Patalano, Chin-Parker, & Ross, 2006), that different explanations differentially

influence conceptual representations (Lombrozo, 2009), and that background beliefs that

explain feature combinations facilitate category learning (Murphy & Allopenna, 1994) and

influence judgments of a category member’s typicality (Ahn, Marsh, Luhmann, & Lee,

2002). Moreover, compared with learning a category through classification and feedback,

explaining items’ category membership can lead participants to rely more heavily on fea-

tures that are meaningfully related to the type of category (e.g., a social club) and less heav-

ily on features that are diagnostic but not meaningful (Chin-Parker, Hernandez, & Matens,

2006), suggesting that explanation and classification with feedback may differentially

impact the category learning process.

A second benefit of studying the role of explanation in the context of category learning

comes from the opportunity to employ well-controlled artificial materials in a relatively well-

understood task. Category members can vary along many dimensions in diverse ways (see

Allen & Brooks, 1991; Ramscar et al, 2010; Yamauchi & Markman, 2000), and prior research

has identified multiple ways in which category membership can be extended from known to

novel items. For example, category membership could be generalized on the basis of rules or

definitions (Ashby & Maddox, 2004; Bruner, Goodnow, & Austin, 1956; Nosofsky, Clark, &

Shin, 1989), rules with exceptions (Nosofsky, Palmeri, & McKinley, 1994), similarity to pro-

totypical summary representations (Hampton, 2006; Posner & Keele, 1968; Rosch & Mervis,

1975), similarity to specific exemplars of a category (Medin & Schaffer, 1978; Nosofsky,

1986), or representations that combine prototypes and exemplars (Love, Medin, & Gureckis,

2004). These competing accounts are a source of contemporary debate (e.g., Allen & Brooks,

1991; Lee & Vanpaemel, 2008; Medin, Altom, & Murphy, 1984; Murphy, 2002).

Our aim here is not to evaluate competing theories of conceptual structure, but rather to

capitalize on what is already known about category learning and categorization to inform
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the design of our experimental task and stimulus materials. Specifically, if explaining con-

strains learners to seek unifying and subsuming regularities, those who engage in explana-

tion should be more likely than learners engaged in a comparison task to discover broad

generalizations underlying category membership.

2. Overview of experiments

In three experiments, we investigate the effects of explaining on the discovery of regular-

ities underlying two artificial categories of alien robots. The principal hypothesis is that

attempting to generate explanations of category membership will constrain learners to

interpret their observations in terms of general unifying patterns, which will facilitate the

discovery of a subtle regularity underlying category membership.

To test this, the categories we employ support two generalizations about category mem-

bership: a feature of body shape that accounts for the membership of 75% of study items

(square vs. round bodies, termed ‘‘the 75% rule’’), and a more subtle feature concerning

foot shape that perfectly accounts for membership of all items (pointy vs. flat feet, termed

‘‘the 100% rule’’). The prediction is that explaining will drive learners to discover the

100% rule. Although the 100% rule is harder to discover than the 75% rule, the 100% rule

provides the most unified account of category membership.

In each of the three experiments, participants study category members, either explaining
why a robot might belong to a given category or engaging in a control task: describing items

(Exp. 1), thinking aloud during study (Exp. 2), or free study (Exp. 3). Participants then cate-

gorize new items, are tested on their memory for the original study items, and are explicitly

asked to report what distinguishes the two categories. Table 1 provides a useful reference

for key differences across experiments, which are discussed in detail in the Methods section

for each experiment.

Three features of this series of experiments are worth emphasizing. First, the explanation

condition is compared with three different control conditions, which have complementary

strengths and weaknesses. In particular, the conditions allow us to examine alternative

accounts of the effects of explanation. If the benefits of engaging in explanation stem from

Table 1

Overview of experiments: key differences

Introduction Study Phase Control Condition

Exp. 1 Informed about two categories 8 items · 50 s (accompanied

by image of all 8)

Describe

Exp. 2 Informed about two categories, and

memory and categorization tests;

exposure to 3 repeated blocks

of all 8 items

2 items · 90 s (accompanied

by image of all 8); 2 items:

consistent vs. anomalous

Think aloud

Exp. 3 Informed about two categories, and

memory and categorization tests

Image of all 8 for120 s Free study
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increased attention to item details, then tasks such as describing that likewise engage atten-

tion should yield a comparable benefit, and the explanation condition should only outper-

form control conditions in Experiments 2 and 3. If the benefits of engaging in explanation

stem from the role of articulating thoughts in language, then the explanation condition

should outperform free study (Exp. 3), but not describing (Exp. 1) or thinking aloud (Exp.

2), which similarly involve language. Our hypothesis, in contrast, predicts a benefit for

explanation across all three control conditions.

Second, the use of artificial categories allows us to investigate our proposal about the role

of explanation in learning while minimizing a potential role for alternative mechanisms. In

particular, because artificial categories evoke minimal prior knowledge, it is unclear how

accounts of explanation that emphasize the integration of new information with prior knowl-

edge would account for a tendency to discover or employ one rule over the other. There are

also no existing mental models of the domain for explaining to repair or revise. In fact, some

accounts of explanation’s role in judgment provide reason to predict that explaining should

promote generalization based on the more salient 75% rule: Explaining why a hypothesis is

true has been shown to increase belief in that hypothesis (for a review, see Koehler, 1991),

suggesting that requiring participants to provide explanations for membership could

entrench belief in initial hypotheses rather than promote discovery of more unifying but sub-

tle alternatives. More broadly, if people articulate hypotheses when they provide explana-

tions and are biased in confirming these initial hypotheses (Nickerson, 1998), explaining

could have adverse effects on discovery.

Finally, in Experiments 2 and 3, participants are explicitly informed of a later categoriza-

tion test. Making the task very explicit to all participants minimizes the possibility that

effects of explanation are due to implicit task demands, such as the prompt to explain simply

directing participants to discover a basis for category membership.

3. Experiment 1

In Experiment 1, participants learned about artificial categories of alien robots. Half were

prompted to explain while learning, the other half to describe. Description was chosen as a

comparison because it requires participants to verbalize, attend to the materials, and be

engaged in processing materials for an equivalent length of time, but it does not impose the

same structural constraints as explanation. If explaining drives participants to interpret

observations in terms of general regularities, then participants prompted to explain should

be more likely than those who describe to discover the subtle but perfectly predictive rule

(the 100% rule) and to use it as a basis for categorization.

3.1. Methods

3.1.1. Participants
One hundred and fifty undergraduates and members of the Berkeley community (75 per

condition) participated for course credit or monetary reimbursement.
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3.1.2. Materials
The task involved study items, test items, transfer items, and memory items.

3.1.2.1. Study items: Participants learned about two categories of robots from an alien pla-

net, glorps and drents (study items are shown in Fig. 1). Each item was composed of four

features: left color (blue, green, red, yellow), right color (brown, cyan, gray, pink), body

shape (square or circular), and foot shape (eight different geometric shapes). Color was

uncorrelated with category membership: Every right and left color occurred exactly once

per category. Body shape was correlated with category membership: three of four glorps

(75%) had square bodies, and three of four drents had round bodies. Finally, each robot had

a unique geometric shape for feet, but there was a subtle regularity across categories: All

glorps (100%) had pointy feet while all drents had flat feet.

This category structure supports at least three distinct bases for categorizing new robots.

First, participants could fail to draw any generalizations about category membership, and

instead categorize new items on the basis of their similarity to individual study items, where

similarity is measured by tallying the number of shared features across items.1 We call this

‘‘item similarity.’’

Alternatively, participants could detect the correlation between body shape and category

membership, called the ‘‘75% rule,’’ as it partitions study items with 75% accuracy. Finally,

participants could discover the subtle regularity about pointy versus flat feet, called the

‘‘100% rule,’’ as it perfectly partitions study items.

3.1.2.2. Test items: Three types of test item (shown in Fig. 2) were constructed by taking

novel combinations of the features used for the study items. Each type yielded a unique cat-

egorization judgment (of glorp ⁄ drent) according to one basis for categorization (100% rule,

75% rule, item similarity), and so pitted one basis for categorization against the other two.

We call these item similarity probes (2 items), 75% rule probes (2 items), and 100% rule

probes (4 items).

Fig. 1. Study items in Experiment 1.
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3.1.2.3. Transfer items: These items used completely novel foot shapes to distinguish partic-

ipants who genuinely drew an abstract generalization concerning ‘‘pointy’’ versus ‘‘flat’’

feet from those who simply recognized the importance of particular foot shapes. For each

item, the 100% rule was pitted against item similarity and the 75% rule. Critically, although

the test items introduced new combinations of old features, the transfer items actually

involved new features (new foot shapes).

3.1.2.4. Memory items: Twenty-three robots were presented in a memory test at the end of

the experiment: 8 were the old study items (35%) and 15 were lures (65%). The lures con-

sisted of test items that were categorized in the test phase, study items with foot shapes

switched to those of another robot, study items with left- and right-hand-side colors

switched, study items with body and colors changed, and study items with entirely new fea-

tures (new colors, body shapes, foot shapes).

3.1.3. Procedure

The task involved several phases: introduction, study, testing, transfer, memory, and an

explicit report.

3.1.3.1. Introduction phase: Participants were instructed that they would be looking at two

types of robots, glorps and drents, from the planet Zarn. They were given a color sheet that

displayed the eight study items, in a random order but with category membership clearly

indicated for each robot. Participants studied the sheet for 15 s and kept it until the end of

the study phase.

3.1.3.2. Study phase: Each of the eight study items was presented onscreen with its category

label. Participants in the explain condition received instructions to explain why the robot

was of that type (e.g., ‘‘This robot is a GLORP. Explain why it might be of the GLORP

type.’’), and those in the describe condition received instructions to describe the robot of

that type (e.g., ‘‘This robot is a GLORP. Describe this GLORP.’’). All participants typed

their responses into a displayed text box, with each robot onscreen for 50 s. Participants

were not allowed to advance more quickly nor take extra time. After the study phase, the

experimenter removed the sheet showing the eight robots.

Fig. 2. Examples of three types of test items from Experiment 1.
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3.1.3.3. Test and transfer phases: The eight test items were presented in random order,

followed by the eight transfer items in random order, with participants categorizing each

robot as a glorp or a drent. To discourage participants from skipping through items without

paying attention, a response was only recorded after each robot had been displayed for 2 s.

Participants were informed of this delay and the screen flickered after the 2-s period ended.

3.1.3.4. Memory phase: The 8 study items (35%) and 15 lures (65%) were presented in a

random order, and participants judged whether each robot was one of the original robots

from the introduction and study phases. As in categorization, items had to be onscreen

for 2 s.

3.1.3.5. Explicit report: Participants were explicitly asked whether they thought there was a

difference between glorps and drents, and if so, to state what they thought the difference

was. Responses were typed onscreen.

3.2. Results

3.2.1. Basis for categorization
To understand how explaining influenced what participants learned about categories, we

evaluated participants’ bases for categorizing novel robots. Explicit reports were coded into

four categories (displayed in Table 2): 100% rule (explicitly mentioning pointy vs. flat feet),

75% rule (square vs. circular body shape), ‘‘item similarity’’ (reliance on nearest match

from study), and ‘‘other.’’2 Responses were coded independently by two coders with 91%

agreement, and the first coder’s responses were used for analyses.3 Table 2 suggests that

more participants learned and utilized the 100% rule in the explain than in the describe
condition, whereas more participants drew on the 75% rule in the describe than the explain
condition.

This pattern was evaluated statistically by tests for association between condition and a

coding category: In each test the four rows were collapsed into two, the first being the target

coding category and the second all other coding categories combined. Participants’ basis for

categorization was more likely to be the 100% rule in the explain than the describe
condition [v2(1) = 15.89, p < .001], while the 75% rule was more prevalent in the describe
than the explain condition [v2(1) = 19.56, p < .001]. ‘‘Item similarity’’ and ‘‘other’’

responses were not significantly associated with condition.

Although both groups of participants drew generalizations about the basis for category

membership, these findings suggest that those in the explain condition were more likely to

Table 2

Number of participants in Experiment 1 coded as providing each basis for categorization on the

basis of explicit reports

100% Rule—Foot 75% Rule—Body Item Similarity Other

Explain 26 14 0 35

Describe 6 40 0 29
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discover the subtle 100% rule, which drew on an abstraction about foot shape to account in

a unified way for the category membership of all study items.

3.2.2. Categorization of test and transfer items
For the purposes of analysis, participants’ categorization responses were scored as accu-

rate if they corresponded to the 100% rule. Fig. 3 shows test and transfer accuracy as a func-

tion of condition. Note that accuracy near 50% does not reflect chance responding, because

items pit bases for categorization against each other. For example, for transfer items, the

two most common accuracy scores were 0% (perfectly systematic use of the 75% rule) and

100% (perfectly systematic use of the 100% rule).

A 2 (task: explain vs. describe) · 2 (categorization measure: test vs. transfer) mixed

ANOVA was conducted on categorization accuracy. This revealed a main effect of task
[F(1,148) = 16.10, p < .001], with participants in the explain condition categorizing test

and transfer items significantly more accurately than those in the describe condition. There

was also a significant effect of categorization measure [F(1,148) = 13.46, p < .001], as test

accuracy was higher than transfer accuracy. It is worth noting that the more accurate catego-

rization of transfer items by participants in the explain condition [t(148) = 2.91, p < .01]

suggests that they not only recognized the importance of foot shape in determining category

membership but also abstracted away from the specific shapes used on study items to recog-

nize the subtle property of having ‘‘pointy’’ or ‘‘flat’’ feet.

Categorization performance was also analyzed separately for each of the three types of

test item (displayed in Fig. 2). Participants’ categorization of the 100% rule probes was

more consistent with the 100% rule in the explain than the describe condition

[t(148) = 4.41, p < .001], whereas categorization of the 75% rule probes was more consis-

tent with the 75% rule in the describe than the explain condition [t(148) = 3.77, p < .001].

There was no difference for item similarity probes [t(148) = 1.37, p = .17]. These patterns

of significance mirror those for explicit reports.

The test and transfer accuracy scores did not follow a normal distribution, as the items

used pit bases for categorization against each other, making the modal responses either very

high or very low. To ensure the reliability of the categorization accuracy findings, we
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Fig. 3. Categorization accuracy on test and transfer items in Experiment 1.
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additionally analyzed categorization accuracy using a nonparametric measure. Each partici-

pant was coded as relying on the 100% rule if 7 or 8 of the eight transfer items were accu-

rately categorized (all others were coded as not using the 100% rule). We relied on transfer

item categorization as the most sensitive measure for use of the 100% rule: Test items could

be perfectly categorized by remembering specific foot shapes. A chi-squared test for associ-

ation substantiated the finding that explaining was associated with greater discovery of the

100% rule [v2(1) = 10.37, p < .01].

3.2.3. Memory for study items
Because engaging in explanation may have drawn special attention to the anomalous

items (an issue addressed in Exp. 2), memory was analyzed separately for items consistent
with the 75% rule and for those that were anomalies with respect to the 75% rule. Memory

performance is reported using the d¢ measure of sensitivity (see Wickens, 2002). The d¢
measure reflects participants’ ability to discriminate old study items from new lures, with

larger values indicating better discrimination. Fig. 4 shows d¢ for consistent and anomalous

items as a function of condition. The ability to discriminate consistent study items from sim-

ilar but new robots was significantly better in the describe condition than the explain condi-

tion [t(148) = 2.24, p < .05]. There was no difference in discrimination of anomalous study

items [t(148) = 0.82, p = .41, Explain: 1.09, Describe: 0.81], although the interpretation of

this null effect is limited by the fact that there were many fewer anomalous items than con-

sistent items, and therefore greater variability in performance.

One explanation for the memory difference is that participants who explained were more

likely to discover the foot rule and then neglect the details of study items. An alternative is

that the processing activities invoked by explaining are not as effective for encoding item

details as are those invoked by describing. For example, it could be that describing allocates

attention to details, that explaining exerts a cost on the resources available for encoding

details, or both. To examine this issue, d¢ for consistent items was examined as a function of

basis for categorization as determined by explicit reports (see Fig. 5). There was no signifi-

cant difference in memory performance for those who explicitly cited the foot rule

[t(30) = 0.88, p = .88] or the body rule [t(52) = 1.41, p = .16), but there was a significant

difference in memory for participants coded in the ‘‘other’’ category [t(62) = 2.19,
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Consistent Anomalous

d' Explain

Describe

Fig. 4. Memory for consistent and anomalous items in Experiment 1.
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p < .05]. This suggests that the memory difference across conditions is not due to discovery

of the 100% rule leading participants to ignore item details, but it may stem from a

difference between the efficacy of explaining and describing for encoding specific details.

3.2.4. Coded content of explanations and descriptions
Each of the eight explanations (or descriptions) a participant provided was coded for

whether a feature was mentioned (foot shape, body shape, and color), and if that feature was

mentioned in an ‘‘abstract’’ or a ‘‘concrete’’ way (for similar coding categories, see Chin-

Parker et al., 2006; Wisniewski & Medin, 1994). References were coded as concrete if they

cited the actual feature, for example, triangle ⁄ square ⁄ L-shaped feet, square ⁄ round body, and

yellow ⁄ green color. References were coded as abstract if they characterized a feature in

more general terms, which could be applied to multiple features, for example, pointy ⁄ flat

feet, big ⁄ strange body, and warm ⁄ complementary colors. Two experimenters coded expla-

nations and descriptions independently, with agreement of 97% (analyses used the first

coder’s responses). Fig. 6 shows the number of features mentioned in each coding category

as a function of task. Two separate 2 (task: explain vs. describe) · 3 (feature: feet vs. body

vs. color) ANOVAs were conducted on the total number of concrete (abstract) features

0.00

0.50

1.00

1.50

2.00

100%
rule

75%
rule

Other

d' Explain

Describe

Fig. 5. Memory for consistent items as a function of basis for categorization in Experiment 1.
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mentioned by each participant. Participants in the explain condition cited a greater number

of abstract features than those in the describe condition [a main effect of task,

F(1,148) = 24.72, p < .001], whereas those in the describe condition cited more concrete

features than those who explained [a main effect of task, F(1,148) = 164.65, p < .001]. Indi-

vidual t tests confirmed that these two findings were reliable for all features (all ps < .05)

except abstract references to body shape [t(148) = 0.82, p = .41).

It is worth noting that participants who explained were more likely to discover the 100%

rule, even though those who described made references to feet more frequently. The coding

data provide evidence against an attentional account of the effects of explaining on discov-

ery, but they are consistent with an attentional explanation for the enhanced memory found

in the describe condition.

3.3. Discussion

Relative to describing—a control condition matched for time, engagement, and verbaliza-

tion—explaining promoted discovery of a subtle regularity underlying category member-

ship. This was reflected in participants’ explicit reports about category structure, as well as

in categorization accuracy on test and transfer items. Coding of actual explanations and

descriptions revealed that explanations involved a greater number of feature references

coded as ‘‘abstract’’ (operationalized as being applicable to multiple feature instances), not

just for feet but also for color. Descriptions involved a greater number of references to fea-

tures that were coded as ‘‘concrete’’ (operationalized as identifying specific feature values),

suggesting that although the specific foot shapes were attended to and referenced by partici-

pants who described, merely attending was insufficient for participants to discover the regu-

larity about foot shape. Despite the advantage of explanation for discovery and

generalization, describing led to better encoding of details for most items and improved per-

formance on a later memory test. Dye and Ramscar (2009) report a similar dissociation

between feature discovery and memory in a prediction task, depending on whether category

labels precede exemplars or exemplars precede labels.

Critically, the category structure employed provides evidence for the role of subsumption

and unification in explanation: Participants in both conditions identified a generalization

underlying category membership (the 75% rule or the 100% rule), but participants who

explained were more likely to discover and employ the 100% rule, which accounts for cate-

gory membership in a more unified way. The findings from Experiment 1 also contribute to

existing work on the self-explanation effect by demonstrating that the effects of engaging in

explanation can extend to learning artificial categories and exceed the benefits of describing

(a condition matched for time and attention) when it comes to learning category structure.

Finally, the finding that participants generated more abstract references not only for feet—

which matched the category structure—but also for color—which did not—suggests that

explaining facilitates the discovery of unifying regularities by encouraging explainers to

represent the material being explained in more diverse or abstract terms.

One potential concern is that the prompt to explain may exert implicit task demands such

as cluing in participants that they should find a basis for category membership, or that they
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should seek features or rules that differentiate the categories. This predicts that overall rule

discovery would be higher in the explain condition, but in fact there was no significant inter-

action between condition and discovery of a rule [collapsing the 75% and 100% rule to one

cell: v2(1) = 1.21, p = .27]. Experiment 2 takes further measures to address this and other

potential issues with our interpretations of the findings from Experiment 1, and additionally

explores the role of anomalies to the 75% rule in prompting discovery of the 100% rule.

4. Experiment 2

The first goal of Experiment 2 is to provide a stronger test of the hypothesis that explain-

ing promotes discovery, building on the results of Experiment 1. Accordingly, Experiment 2

uses a think aloud control condition instead of the describe condition. In Experiment 1, it is

possible that the difference between performance in the explain and describe conditions

resulted exclusively from a tendency of description to inhibit discovery. Thinking aloud

places fewer restrictions than describing on how participants engage with the task, while

matching explaining aloud for verbalization. A second concern with Experiment 1 is that

the prompt to explain may have exerted implicit task demands, such as providing a cue to

participants that they should find a basis for category membership, or that the category was

likely to have a sufficiently simple structure to permit accurate generalization. To address

this issue, all participants in Experiment 2 are explicitly instructed that they will

later be tested on their ability to remember and categorize robots in order to generate

equivalent expectations about the task and category structure. If the benefits of explanation

derive solely from these expectations, in Experiment 2 the participants who think aloud

will have comparable benefits with those who explain, eliminating a difference between

conditions.

The second goal of Experiment 2 is to further investigate the process of discovery by

examining the role of anomalous observations with and without explanation. Experiment 1

demonstrates that explaining category membership promotes discovery, but it required

explanations or descriptions for robots both consistent and inconsistent with the 75% rule. It

is thus unclear whether noticing or explaining the category membership of items inconsis-

tent with the 75% rule played a special role in discovery.

One possibility is that participants who explained were more likely to realize that the

anomalous items were inconsistent with the 75% rule, and that the recognition of exceptions

was sufficient to reject the 75% rule and prompt discovery of the 100% rule. If this is the

case, then drawing participants’ attention to the anomalies should match and eliminate the

benefits of explaining. Another possibility is that engaging in explanation encourages partic-

ipants to consider regularities they might not otherwise entertain, regardless of whether they

are confronted with an item that is anomalous with respect to their current explanation. This

hypothesis predicts that explaining will promote discovery whether participants are explain-

ing consistent or anomalous items.

A third possibility is that providing explanations will increase participants’ confidence in

their explanations, reinforcing the use of features invoked in whichever explanation is first
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entertained. Because the 75% rule is more salient, participants who are prompted to explain

items consistent with the 75% rule may perseverate in its use and ultimately discover the

unifying 100% rule less frequently than those who think aloud about these items.

A final possibility, and the one we favor, is that the conjunction of explaining and anoma-

lous observations will lead to the greatest discovery, by constraining learning such that

participants are driven to discover a basis for category membership that subsumes the anom-

alies. Explaining anomalies may thus play a special role in discovery, beyond merely

drawing attention to anomalies or explaining consistent observations. This possibility is

consistent with previous work suggesting that noticing anomalies is insufficient for belief

revision (see Chinn & Brewer, 1993). Without engaging in explanation, anomalies may be

ignored, discounted, or simply fail to influence learning.

To investigate these issues, the study phase in Experiment 2 was modified so that learners

provided explanations (or thought aloud) for only two robots: a glorp and drent that were

both either consistent or inconsistent (anomalous) with respect to the 75% rule. The result

was a 2 · 2 between-subjects design with task (explain vs. think aloud) crossed with obser-
vation type (consistent vs. anomalous). Participants viewed all of the robots and retained the

sheet of eight items, but the targets of explaining or thinking aloud were either consistent or

anomalous observations.

4.1. Methods

4.1.1. Participants
Two hundred and forty undergraduates and members of the Berkeley community partici-

pated (60 per condition) for course credit or monetary reimbursement.

4.1.2. Materials
The materials were the same as in Experiment 1, with minor changes to study items and a

modified set of memory items: The number of consistent lures was reduced and the number

of anomalous lures increased. There were 8 old items and 12 lures.

4.1.3. Procedure
The procedure followed that of Experiment 1, with the following changes.

4.1.3.1. Task instructions: The initial instructions explicitly informed participants: ‘‘You

will later be tested on your ability to remember the robots you have seen and tested on your

ability to decide whether robots are GLORPS or DRENTS.’’ Participants were also

reminded of this before explaining (thinking aloud) in the study phase.

4.1.3.2. Prestudy exposure: After participants received and viewed the sheet of robots, the

introduction phase was augmented by presenting each of the eight robots onscreen. A block

consisted of displaying each of the eight robots for 4 s with its category label, in a random

order. Three blocks were presented, with a clear transition between blocks. This portion of

the experiment ensured that participants across conditions observed and attended to the eight
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study items, although only two items were displayed onscreen for the explain or think-aloud

phase.

4.1.3.3. Study phase: Although participants provided explanations (descriptions) for all eight

robots in Experiment 1, the Experiment 2 study phase only presented two robots (one glorp

and one drent) for 90 s each, with a warning when 30 s were left. In the consistent condition,

the two robots were randomly selected from the six consistent with the 75% rule, whereas in

the anomalous condition the two robots were those inconsistent with the 75% rule.

Instructions to explain and think aloud were provided before the robots were displayed,

so the prompt accompanying each robot was omitted. Participants were instructed to explain

out loud or think aloud, and their speech was recorded using a voice recorder. The explain
instructions were identical to Experiment 1, whereas the think aloud instructions were as

follows: ‘‘You should say aloud any thoughts you have while you are looking at the robots

on the screen or on the paper. Say aloud whatever you are thinking or saying in your head,

whether you are having thoughts about the robots, memorizing what they look like, or any-

thing at all—even if it seems unimportant.’’

4.1.3.4. Test, transfer, and memory: The test, transfer, and memory phases were identical to

Experiment 1, except that the restriction that responses could only be made after 2 s was

removed.

4.1.3.5. Postexperiment questions about body shape: After the explicit report, participants

were asked to recall how many glorps (drents) from the study items were square (round).

Four questions were posed to elicit responses for each type of robot with each type of body

shape, of the form ‘‘How many of the original GLORPS [DRENTS] had square [round]

bodies?’’

4.2. Results

4.2.1. Basis for categorization and categorization accuracy
Data on participants’ basis for categorization (as reflected by explicit reports) and catego-

rization accuracy both provided evidence that explaining promoted discovery of the 100%

rule more effectively than thinking aloud. Explicit reports were coded as in Experiment 1

and are shown in Table 3. Agreement between coders was 91%, with analyses based on the

Table 3

Number of participants in Experiment 2 coded as providing each basis for categorization on the

basis of explicit reports

100% Rule—Foot 75% Rule—Body Other

Explain—consistent 22 19 19

Explain—anomaly 26 10 24

Think aloud—consistent 8 17 35

Think aloud—anomaly 8 22 30
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first coder. As in Experiment 1, the contingency table was analyzed by collapsing the coding

of explicit reports to two categories, giving a discovery factor with two levels: (a) reports

reflecting discovery and use of the foot rule, and (b) all other responses. A hierarchical log-

linear analysis with backwards elimination was carried out on the task · item type · discov-
ery contingency table, revealing a highly significant interaction between task and discovery
[v2(1) = 21.91, p < .001]: Explaining was associated with discovery of the 100% rule. With

post hoc tests comparing individual conditions, discovery was more frequent in both explain

conditions than in either think-aloud condition [v2(1) = 8.71, p < .01, v2(1) = 8.71, p < .01;

and v2(1) = 13.30, p < .001, v2(1) = 13.30, p < .001].

The benefit for explaining over thinking aloud was mirrored in categorization accuracy

(see Fig. 7). A 2 (task: explain vs. think aloud) · 2 (item type: consistent vs. anoma-

lous) · 2 (categorization measure: test vs. transfer) mixed ANOVA revealed a significant

main effect of task [F(1,236) = 21.90, p < .001], with more accurate categorization in the

explain condition. The effect of item type [F(1,236) = 3.35, p = .07] and the interaction

between task and item type [F(1,236) = 3.35, p = .07] were marginal. There was addition-

ally a significant effect of categorization measure [F(1,236) = 14.38, p < .001], with test

accuracy higher than transfer, and significant interactions between categorization measure
and task [F(1,236) = 4.71, p < .05] and categorization measure and item type [F(1,236) =

4.71, p < .05], with transfer accuracy being a more sensitive measure of the differences

between explaining and thinking aloud. Contrasts revealed that categorization accuracy was

significantly higher in the explain-anomalous condition than in the explain-consistent condi-

tion [F(1,118) = 5.83, p < .05] or in either think-aloud condition [F(1,118) = 14.51,

p < .001, F(1,118) = 12.68, p < .001].

As in Experiment 1, categorization accuracy scores were not normally distributed, so a

nonparametric analysis based on transfer accuracy was also carried out. The basis for cate-

gorization inferred from transfer accuracy (criterion for 100% rule: 7 or 8 of 8 transfer items

correct) is shown in Table 4 and is referred to as inferred discovery. A log-linear analysis of

task · item type · inferred discovery revealed an interaction between task and inferred dis-
covery [v2(1) = 18.59, p < .001] and also between item type and inferred discovery
[v2(1) = 3.91, p < .05]. This suggests that both explaining and the presence of anomalies

contributed to discovery. The trend toward greater discovery in the explain-anomalous

condition than the explain-consistent condition was marginal [v2(1) = 2.76, p = .10].
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Fig. 7. Categorization accuracy in Experiment 2.
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Across all three measures (basis for categorization based on explicit reports, categoriza-

tion accuracy, and basis for categorization based on transfer accuracy), explaining was sig-

nificantly associated with facilitated discovery. However, only basis for categorization

based on transfer accuracy revealed a reliable effect of anomalous observations, and only

categorization accuracy revealed a reliable difference between the explain-anomalous and

explain-consistent conditions, with the other measures providing consistent but marginal

support.

Explaining anomalies may have facilitated discovery, in part, by fostering the rejection

of the 75% rule. To analyze reliance on the 75% rule, the factor body use was created with

two levels: (a) explicit report of using the 75% rule, and (b) all other responses. A log-linear

analysis revealed a significant three-way interaction between task, item type, and body use
[v2(1) = 4.35, p < .05]. Reliance on the 75% rule was more frequent in the explain-consis-

tent than the explain-anomalous condition, approaching significance [v2(1) = 3.68,

p = .055], with no difference for the think-aloud conditions [v2(1) = 0.95, p = .33].

4.2.2. Memory
Separate 2 · 2 ANOVAs were conducted on the discrimination measure d¢ for both con-

sistent and anomalous items. There was an effect of observation type on the discrimination

of anomalous items [F(1,236) = 21.53, p < .001], simply reflecting that the discrimination

of anomalous items was better in the anomalous conditions. No other effects were

significant (all ps > .30). Memory for the original items did not appear to be differentially

influenced by explaining versus thinking aloud.

4.2.3. Postexperiment questions about body shape
Due to an experimental error, responses to the questions about how many robots in each

category had a particular body shape only ranged over 1, 2, 3, and 4 (participants could not

say ‘‘0’’), and responses were only recorded for the final 103 participants. We therefore

exclude a full analysis and employ the data we do have only as an index of participants’

awareness of anomalies to the 75% rule across conditions. As a measure of whether a partic-

ipant realized there were exceptions to the trend in body shape, if a participant stated that

there were 4 square glorps or 4 round drents, the participant was coded as not noticing the

anomaly.4 According to this measure, the proportions of participants who noticed the

anomalies were as follows: think aloud-consistent, 65% (17 of 26); think aloud-anomalous,

64% (16 ⁄ 25); explain-consistent, 74% (20 ⁄ 27); and explain-anomalous, 92% (23 ⁄ 25). This

Table 4

Number of participants in Experiment 2 corresponding to each basis for categorization as

inferred from transfer accuracy

100% Rule—Foot Not 100% Rule

Explain—consistent 21 39

Explain—anomaly 30 30

Think aloud—consistent 8 52

Think aloud—anomaly 13 47
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suggests that a sizeable number of participants noticed the anomalies in all conditions. In

particular, the majority (more than 50%) of participants in the explain-consistent condition

noticed and recalled the anomalies [v2(1) = 6.26, p < .05], although they only provided

explanations for the items consistent with the 75% rule.

4.3. Discussion

Building on the findings from Experiment 1, Experiment 2 found that engaging in explana-

tion facilitated discovery relative to a think-aloud control condition that exerted fewer restric-

tions on processing than describing. This effect of explanation occurred despite the fact that

participants were informed that they would later have to categorize robots, and were given an

opportunity to study each robot multiple times before the explain ⁄ think-aloud manipulation.

The difference across explanation conditions additionally provides some suggestive evi-

dence that explaining anomalous observations may be more effective for accurate learning

and generalization than explaining observations consistent with current beliefs. Explaining

anomalies seems to have prompted participants both to reject conflicting beliefs (the 75%

rule) and to discover broader regularities (the 100% rule), although the former effect was

more reliable than the latter. As suggested by the questions about body shape, it is possible

that larger or more reliable effects were not observed because participants in the explain-

consistent condition overwhelmingly noted the anomalies, and examining the sheet of all

eight robots or recalling anomalies from the prestudy phase may have led participants in this

condition to seek a more unifying explanation for category membership, even while explain-

ing consistent items.

The two think-aloud conditions led to comparable rates of discovery, with hints of a ben-

efit for thinking aloud while observing anomalies. However, even in the think-aloud-anoma-

lous condition, discovery fell reliably short of that in the explanation conditions. Although

attention was drawn to anomalies and the design arguably provided implicit demands to

incorporate these items into beliefs about category membership, only a small number of par-

ticipants discovered and employed the 100% rule. This suggests that attending to, observing,

and thinking aloud about anomalies are insufficient to promote discovery; a process like

explaining is additionally required.

There were no significant differences in memory between the explain and think-aloud

conditions. This could suggest that the memory difference in Experiment 1 was driven by

description’s facilitation of memory, not a memory cost for explanation. However, a more

conservative interpretation of the null effect may be warranted: Participants received

considerable exposure to study items outside of the explain vs. think-aloud phase, poten-

tially minimizing the effect of this manipulation on memory.

5. Experiment 3

The final experiment was a replication in which participants in the control condition were

not instructed to perform a specific task, and all of the robots were simultaneously presented

794 J. J. Williams, T. Lombrozo ⁄ Cognitive Science 34 (2010)



for study. This control condition aimed to address the possibility that the previous benefits

of explanation were driven by describing and thinking aloud inhibiting discovery, not by

explanation promoting discovery. If our interpretations of Experiments 1 and 2 are correct,

explaining should promote discovery relative to a condition in which participants are not

required to perform an alternative task.

5.1. Methods

5.1.1. Participants
Participants were 120 undergraduate students enrolled in a psychology course who

received course credit for completing the experiment as part of an hour of online surveys.

5.1.2. Materials
Participants saw all eight robots onscreen in an image that was identical to that in the pre-

vious experiments, except that each robot also had an associated number (the glorps were

labeled 1 through 4, the drents 5 through 8). Due to time constraints, fewer test, transfer,

and memory items were presented. Test items consisted of one item similarity probe, one

75% rule probe, one item that received the same classification from all three bases, and four

100% rule probes. There were four transfer items. Memory items consisted of four old items

and four lures.

5.1.3. Procedure
Participants completed the experiment online. The instructions informed them that they

would be learning about alien robots and that they would later be tested on their ability to

remember and categorize robots. An image appeared onscreen that showed all eight robots

along with labels and numbers, and informed participants: ‘‘These are 8 robots on ZARN.

This image will be onscreen for 2 minutes.’’ In the explain condition participants were also

told: ‘‘Explain why robots 1, 2, 3 & 4 might be GLORPS, and explain why robots 5, 6, 7 &

8 might be DRENTS.’’ and typed their response into a text box. In the free study condition

participants were told: ‘‘Robots 1, 2, 3 & 4 are GLORPS, and robots 5, 6, 7 & 8 are

DRENTS.’’

The image was fixed to be onscreen for 2 min. After it was removed, participants catego-

rized test and transfer items, completed the memory test, and answered several additional

questions. Question 1 was ‘‘What do you think the chances are that there is one single fea-

ture that underlies whether a robot is a GLORP or a DRENT—a single feature that could be

used to classify ALL robots?’’ and responses were 0%, 25%, 50%, 75%, or 100%. Question

2 asked participants to report whether they thought there were noticeable differences

between glorps and drents, and whether they thought there were, and if so what those

differences were.

Question 3 showed a green screen ostensibly placed in front of a robot, obscuring all fea-

tures except for the edges of its arms that extended beyond the sides of the screen. Partici-

pants were shown four questions they could ask about the robot, and they were required to

specify the order in which they would ask the questions if they had to decide whether the
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obscured robot was a glorp or drent. The options were ordered randomly and were as

follows: (1) What color is it? (2) What does its body look like? (3) What do its feet look

like? and (4) I would not ask any more questions—they will not be helpful. (The results

from Question 3 were redundant with other measures, and are hence not reported.)

Question 4 asked participants to state which features of glorps and drents they used in cat-

egorizing robots.

Question 5 asked, ‘‘When the image of 8 numbered robots was onscreen, were you trying

to explain why particular robots were glorps, and why particular robots were drents?’’ and

the randomly ordered responses were ‘‘Yes,’’ ‘‘Not sure,’’ and ‘‘No.’’

Question 6 asked whether participants had previously been in an experiment that used

these materials.5

5.2. Results and discussion

5.2.1. Basis for categorization and categorization accuracy
Basis for categorization was coded from participants’ explicit reports and the features

they reported using in categorization, and this is shown in Table 5. As in previous experi-

ments, the reports were independently coded by two experimenters: Agreement was 87%

and analyses are based on the first coder’s responses. Fig. 8 shows test and transfer accuracy

as a function of condition.

Explaining was significantly associated with higher rates of discovery and use of the

100% rule, as revealed both in explicit reports [v2(1) = 4.09, p < .05] and in categorization

accuracy [a main effect of task in a task · categorization measure ANOVA,

Table 5

Number of participants in Experiment 3 coded as providing each basis for

categorization on the basis of explicit reports

100% Rule—Foot 75% Rule—Body Other

Explain 17 9 34

Free study 8 19 33
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Fig. 8. Categorization accuracy in Experiment 3.
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F(1, 118) = 7.02, p < .01]. Explaining was also significantly associated with reduced use of

the 75% rule [v2(1) = 4.66, p < .05].

5.2.2. Memory
There was no significant difference in memory (as measured by discrimination, d¢) for

consistent items [t(118) = 1.60, p = .11: Explain: 0.89, Free study: 0.35] or anomalous

items [t(118) = 0.26, p = .80: Explain: 0.74, Free study: 0.62].

5.2.3. Likelihood of underlying feature
There was no difference across conditions in how likely participants thought it was that

there was a single feature underlying category membership [t(118) = 0.65, p = .52; Explain:

37.9, Free Study: 42.1]. Moreover, there were no significant differences when the analysis

was performed separately for each coded basis for categorization: feet, body shape, or

‘‘other’’ (all ps > .12). This suggests that the effect of the prompt to explain was not simply

to communicate to participants that there was a regularity present.

5.2.4. Self-report of explaining
As expected, a greater number of participants reported explaining category membership

in the explanation condition than in the control condition (see Table 6). However, there was

not a significant association between condition and response cell [v2(1) = 2.41, p = .30]. It

is interesting that the prompt to explain was effective, even though a sizeable number of

participants reported spontaneously trying to explain in the free study condition. It may be

that explaining manifests its effects in a graded way: not simply as a function of whether

participants attempt to explain, but in the frequency of generating explanations or in the

degree to which participants persist in explaining.

To analyze the independent roles of the prompt to explain and reported efforts to explain,

a log-linear analysis was performed on the following three factors: discovery (explicitly

reported foot discovery, or not), task (explain vs. free study), and explain-report (‘‘yes’’

response to question about explaining, vs. ‘‘not sure’’ and ‘‘no’’). These data are displayed

in Table 7. There were significant interactions between task and discovery [v2(1) = 4.17,

p < .05], and also between explain-report and discovery [v2(1) = 13.96, p < .001]. This sug-

gests two additive effects and provides further evidence for the importance of explaining in

discovery. Prompts to explain tended to facilitate discovery, and to the extent that the

prompt to explain was obeyed (in the explain condition) or that participants engaged in

spontaneous explanation (in the free study condition), discovery was also promoted.

Table 6

Number of participants reporting attempts to explain category member-

ship in Experiment 3

Engaged in Explanation? Explain Free Study

Yes 29 23

Not sure 20 19

No 11 18
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6. General discussion

Experiments 1–3 find that participants prompted to explain why items belong to particu-

lar categories are more likely to induce an abstract generalization (100% rule) governing

category membership than are participants instructed to describe category members (Exp.

1), think aloud during study (Exp. 2), or engage in free study (Exp. 3). These findings pro-

vide evidence for a subsumptive constraints account of explanation’s effects: that explaining

exerts constraints on learning that drive the discovery of regularities underlying what is

being explained, and thereby support generalization.

Our findings support an account of explanation that emphasizes subsumption and unifica-

tion. If good explanations are those that show how what is being explained is an instance of

a general pattern or regularity, then trying to explain category membership should drive par-

ticipants to discover patterns and regularities. And if explanations are better to the extent

they unify a greater number of observations, explaining should drive participants to induce

broad generalizations that surpass the 75% accuracy afforded by body shape, and support

generalization to new contexts.

In addition to providing insight into the constraints exerted by explaining, Experiments 1

and 2 suggest that the mechanisms by which explaining promotes discovery involve

abstraction and anomalies. In Experiment 1, participants who explained not only generated

more abstract feature references about foot shape than did those who described, but they

also did so about color, even though the category structure did not support obvious general-

izations about color. This suggests that explaining encourages learners to redescribe the

material being explained in terms of new and potentially abstract features, because this rede-

scription helps satisfy the demands of explanation: greater unification. Consistent with this

possibility, Wisniewski and Medin (1994) reported that people’s prior knowledge guided

the construction of abstract features and hypotheses about category items. Explaining may

invoke prior knowledge that guides such feature construction.

Experiment 2 provided some evidence for the value of explaining anomalies in driving

discovery and revising beliefs. Even though the think aloud-anomalous condition drew

attention to anomalies, attending to anomalies did not promote learning as effectively as

explaining them. Providing explanations for anomalies may ensure that information incon-

sistent with current beliefs is not ignored or discounted but used in a way that drives discov-

ery and belief revision (for related discussion see Chinn & Brewer, 1993). In particular,

Table 7

Number of participants in Experiment 3 coded as providing each basis for categorization on the basis of explicit

reports, further subdivided by self-reported explaining

Engaged in Explanation? 100% Rule—Foot 75% Rule—Body Other

Explain Explain—yes 14 2 13

Explain—other 3 7 21

Free study Explain—yes 5 11 7

Explain—other 3 8 26
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explaining anomalies may lead to the rejection of beliefs inconsistent with the anomalies in

addition to promoting the construction of more unifying alternatives.

Although the reported experiments are the first to extend self-explanation effects to an

artificial category learning task, we do not see this extension as the primary contribution

of this work. After all, the powerful effects of explanation on learning and generalization

have been well established in previous research using complex and educationally rele-

vant materials. Rather, the current experiments help fill gaps in this previous research by

testing a specific proposal about why explaining might play the role it does in general-

ization. Using a more controlled task and stimuli allowed a rigorous test of the hypothe-

sis that explaining drives the discovery of regularities that support generalization, but

necessarily reduced the richness of the explanations involved to concern a simple pat-

tern. Having established the current approach as a successful strategy for investigating

explanation, an important direction for future research on explanation’s role in discovery

and generalization will be to reintroduce real-world complexity while maintaining experi-

mental control.

Understanding why explaining promotes generalization has implications for both cogni-

tive psychology and education. For example, the memory findings from Experiment 1 sug-

gest that explanation and description may be complementary learning strategies, with

explanation promoting the discovery of regularities, and description supporting memory for

item details. In many learning contexts, encoding facts and details is essential and may even

be a prerequisite to future learning. For example, in domains where learners have insuffi-

cient knowledge to induce underlying regularities, explaining is unlikely to facilitate gener-

alization through discovery. Engaging in activities like description, memorization, or

receiving directed instruction may be more useful and promote the acquisition of back-

ground knowledge that supports future discovery. The subsumptive constraints account elu-

cidates the mechanisms underlying explanation’s effects, providing insight into the contexts

in which explaining is or is not the most effective learning strategy.

In fact, one counterintuitive prediction of our account is that explaining should hinder

learning under certain conditions. If explaining consistently exerts the constraint that obser-

vations are interpreted in terms of unifying patterns, it may be less helpful or even harmful

in unsystematic domains, or when insufficient data are available (for recent evidence

that explanations are not always beneficial, see Kuhn & Katz, 2009; Wylie, Koedinger, &

Mitamura, 2009). In the absence of true regularities, explaining random observations

may lead people to induce incorrect generalizations. An anecdotal example of this might be

elaborate ‘‘conspiracy theories.’’ Explaining small samples of unrepresentative observations

might also lead to the induction of incorrect patterns that do not generalize. Speculatively,

this could be the case in inferring illusory correlations, such as in social stereotyping

(e.g., Hamilton, 1981). One future direction is assessing whether documented biases or

misconceptions can be understood from this perspective, and exploring the possibility that

explaining can hinder accurate learning through ‘‘illusory discovery.’’

In the remainder of the discussion, we consider alternative interpretations for the effects

of explanation and the relationship between explanation and other learning mechanisms.

We conclude by highlighting a few promising future directions.
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6.1. Alternative interpretations of the effects of explanation

An inherent difficulty in investigating the effects of prompts to explain is interpreting the

differences between explaining and control conditions. In Experiment 1, it is possible that

the difference between conditions was due to describing inhibiting discovery, with no bene-

fit to explaining. However, explaining was also found to have an effect relative to thinking

aloud (Exp. 2), which did not impose the restrictions that describing item features does, and

relative to free study (Exp. 3). In Experiment 2, it is possible that thinking aloud distracted

participants from crucial aspects of the task, but a difference was also found when partici-

pants were required to attend to items by describing (Exp. 1) or did not have to perform any

potentially distracting task (Exp. 3). Finally, the findings from Experiment 3 might be

explained in terms of explaining increasing attention to item features or requiring the use of

language. But this kind of attentional account would not predict the differences observed in

Experiment 1, and appeals to language or articulation are less plausible in light of the bene-

fits for explaining found in Experiments 1 and 2.

In sum, although each finding may allow for alternative explanations, the plausibility of

these alternatives is decreased in the context of all three experiments. Moreover, there are

reasons to expect describing, thinking aloud, and free study to help discovery rather than

hurt it: by promoting attention, requiring articulation, and allowing participants to select any
learning strategy. It is noteworthy that explaining had a beneficial effect above and beyond

all three of these comparison conditions, which arguably intersect with activities typically

engaged in by students and other learners.

Another set of alternative interpretations concerns task demands. One possibility is that

prompting participants to explain exerted its effects by indirectly communicating to partici-

pants that they should search for a basis for category membership. For example, the prag-

matics of the explanation prompt might suggest the experimenter designed the categories to

have differentiating features and expected participants to search for differences between cat-

egories. However, Experiments 2 and 3 explicitly informed participants that they would

have a later categorization test in both the explain and control conditions. If explanation’s

only effect was to suggest to participants that they should find a feature that could be used

to differentiate the categories, these instructions should have led to identical learning in the

explanation and control conditions of Experiments 2 and 3. This alternative interpretation is

also less plausible in light of the fact that participants in both the explain and control condi-

tions identified body and foot shape features that figured in categorization rules: Even with-

out a prompt to explain, participants sought differences between the categories. The critical

difference was whether the differentiating rule they identified was the 75% rule or the 100%

rule, which resulted in greater unification and subsumption.

Another task demand interpretation could be that being told to explain helps

merely because it suggests to participants that they should find a defining feature underlying

category membership. Although this interpretation has some intuitive appeal, additional

assumptions are needed in understanding why people would interpret a prompt to explain as

concerning a defining feature, rather than some other structure. In fact, the subsumption

account predicts that the prompt constrains learners to seek knowledge that shows how what
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they are explaining is an instance of a general pattern, which in this particular task could be

knowledge about defining features or criteria that specify necessary and sufficient conditions

for category membership. It is not clear that this particular ‘‘task demand’’ interpretation

competes with an account in terms of subsumptive constraints.

6.2. Relationship between explanation and other cognitive processes

In this section, we consider the relationship between explanation and other cognitive

processes that could play a role in learning—such as depth of processing, rule learning,

hypothesis testing, and comparison.

Interpreting the effects of explaining raises the question of its relationship to depth of pro-

cessing in memory research (Craik & Lockhart, 1972). For example, do effects of explain-

ing reflect a standard depth of processing effect? On this point, it is worth noting that

participants who explained processed items in a way that resulted in worse memory than did

those in the describe control condition. One way to relate explanation and depth of process-

ing is to interpret this work as a specific proposal about what the deeper processing

prompted by explaining comprises. What seems most important about the prompt to explain

is that it drives learners to allocate attention to the right features and patterns and to process

items in an appropriate way for discovering regularities that can be constructed on the basis

of current knowledge. We would argue that explaining exerts constraints that drive deeper

processing of a specific kind: processing that is directed toward satisfying the subsumptive

properties of explanation and so results in the discovery of regularities.

Some theories of category learning have emphasized the role of rules (e.g., Bruner et al.,

1956) and aim to characterize the conditions under which categorization is more rule-like or

more exemplar or prototype-based (Allen & Brooks, 1991; Lee & Vanpaemel, 2008;

Sloman, 1996). It may be that the effect of explanation on category learning can be

interpreted as increasing participants’ use of rule-based strategies. However, explaining does

not merely encourage the use of rules per se, as it promoted discovery of the 100% rule

above the 75% rule. Models of category learning that favor rules with the fewest exceptions

(Goodman, Tenenbaum, Feldman, & Griffiths, 2008; Nosofsky et al., 1994) predict this

result and naturally correspond to explanation’s subsumption and unification constraints.

More broadly, if it is the case that ‘‘good’’ rules are those that make for good explanations,

research on explanation and research on rule-based models may be mutually informing.

However, to the extent that explaining exerts constraints other than subsumption and unifi-

cation (such as relating observations to prior causal knowledge), people’s learning about

categories through explanation may be less amenable to rule-based accounts. Reliance on

rules, exemplars, or prototypes also does not exhaust the range of category-learning

mechanisms that have been identified. Ramscar et al. (2010) report a ‘‘Feature-Label-

Ordering’’ effect in which participants who learn a category structure through exposure to

exemplars followed by category labels learn discriminating features better than those

exposed to category labels followed by exemplars. It may be that explanation encourages

the kind of processing observed in the former condition, although further research would be

required to establish this connection.
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In these experiments, we interpret the findings of enhanced discovery as a consequence

of explainers converging on knowledge that satisfies properties of explanation like

subsumption and unification. But these results could also be understood in terms of

hypothesis testing. Perhaps participants in the explain condition formulated and tested

hypotheses about category membership, which facilitated rejection of the 75% rule and dis-

covery of the 100% rule. Another possibility is that participants in the explain condition

engaged in the comparison of items, so that processes like structural alignment of item fea-

tures facilitated the induction of the subtle 100% rule (e.g., Yamauchi & Markman, 2000).

Instead of regarding these possibilities as mutually exclusive alternatives, they can be

thought of as complementary proposals about which cognitive processes are recruited by

explainers to satisfy the demands of explanation. Constructing explanations exerts a specific

constraint on learning: that observations be interpreted in terms of unifying patterns. In sat-

isfying this constraint, explainers may be driven to test different hypotheses when current

beliefs are found to provide inadequate explanations, and they may engage in comparison

and structural alignment of category members in the service of identifying unifying patterns.

More generally, explaining may recruit a range of cognitive processes in order to produce

explanations that satisfy particular structural properties. The cognitive processes recruited

will likely correspond to those identified by previous research as effective in facilitating

learning and discovery: logical, inductive, and analogical reasoning, comparison, hypothesis

testing, and so on. In fact, Chi et al.’s (1994) coding of self-explanations found that approxi-

mately one-third of explanations reflected the use of other learning mechanisms, such as

logical and analogical reasoning.

7. Future directions and conclusions

These experiments suggest the utility of subsumption and unification, but there is a great

deal of future research to be carried out in exploring how properties of explanation play a

role in learning. A central question for future research concerns which kinds of patterns or

regularities are judged explanatory, and hence likely to be discovered through explanation.

Patterns that are consistent with prior knowledge and law-like are excellent candidates, but

distinguishing law-like generalization from accidental generalizations is notoriously difficult

(see, e.g., Carroll, 2008 in philosophy, and Kalish, 2002, for a relevant discussion from psy-

chology). Theories of explanation from philosophy of science provide proposals about other

important properties of explanations, such as identifying the causes relevant to bringing

about what is to be explained. Does explaining especially privilege the discovery of causal

regularities?

Research in psychology has distinguished mechanistic and functional explanations

(see Kelemen, 1999; Lombrozo, 2009; Lombrozo & Carey, 2006) and explored the role

simplicity plays in the evaluation of explanations (see E. Bonawitz & T. Lombrozo,

unpublished data; Lombrozo, 2006). Do mechanistic and functional explanations play

different roles in the acquisition of knowledge? Does people’s preference for simple

explanations have consequences for learning? If a function of explanation is to support
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generalization (see Lombrozo & Carey, 2006, for a proposal to this effect), then

subsumption and unification may trade off with other properties of explanations that

support generalization.

The focus in this paper has been on human learning, but the proposal that the subsump-

tive properties of explanation exert constraints that can contribute to discovery and general-

ization may also inform machine learning, where algorithms involving explanation have

been proposed (e.g., Lewis, 1988). Approaches in artificial intelligence referred to as

‘‘explanation-based learning’’ and ‘‘explanation-based generalization,’’ for example,

provide algorithms for learning generalizations by explaining one or a few examples (e.g.,

Ahn, Brewer, & Mooney, 1992; DeJong & Mooney, 1986; Mitchell et al., 1986). These

algorithms employ a circumscribed conception of explanation (as a process of deduction),

but employing a broader notion of explanation that is informed by the kind of approach we

adopt here may be useful in extending such algorithms.

Our experiment is the first (that we know of) to draw on theory from philosophy of

science and methodology in cognitive psychology to examine the effects of explaining on

learning, a phenomenon empirically established in educational and developmental psychol-

ogy. We believe that the integration of these disciplines has a great deal of promise.

Theories of explanation from philosophy can provide novel insights into the role of explana-

tion in learning and generalization. And by using artificial categories, a research strategy

from cognitive psychology, one can control participants’ prior beliefs and provide a more

precise characterization of the role of explanation in the discovery of generalizations. We

hope that these experiments contribute to the utilization of philosophical work on explana-

tion, and further explorations at the intersection of educational and cognitive psychology.

Drawing on insights from each discipline offers the opportunity to gain a deeper understand-

ing of the key role explaining plays in learning.

Notes

1. To confirm that our criterion for similarity (number of shared features) corresponded

to that of naı̈ve participants, 25 participants who were not in the main studies were

presented with each item from the categorization tests, and asked to indicate which

study item was most similar. Across all items, the study items our criterion identified

were the most frequently chosen.

2. The ‘‘Other’’ category further consisted of blank, ‘‘no difference,’’ any other basis,

and unclear or uncodable responses.

3. Coding revealed that some participants reversed the two category labels. An example

would be stating that glorps had flat feet or that drents had square bodies, when in fact

the opposite was true. For all three experiments, when a participant’s verbal response

or postexperiment debriefing unambiguously indicated a switch in category labels, that

participant’s categorization responses were reverse coded.

4. We interpret these data as suggesting that a sizeable proportion of participants noticed

the anomaly, and so we used this measure because it is conservative: using a ‘‘4’’
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answer to both questions as the measure for not noticing the anomaly identifies even

more participants as having noticed the anomaly.

5. Three participants who indicated previous participation were dropped from the analysis.
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