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Ockham’s Razor Cuts to the Root: Simplicity in Causal Explanation
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When evaluating causal explanations, simpler explanations are widely regarded as better explanations.
However, little is known about how people assess simplicity in causal explanations or what the consequences
of such a preference are. We contrast 2 candidate metrics for simplicity in causal explanations: node simplicity
(the number of causes invoked in an explanation) and root simplicity (the number of unexplained causes
invoked in an explanation). Across 4 experiments, we find that explanatory preferences track root simplicity,
not node simplicity; that a preference for root simplicity is tempered (but not eliminated) by probabilistic
evidence favoring a more complex explanation; that committing to a less likely but simpler explanation
distorts memory for past observations; and that a preference for root simplicity is greater when the root cause
is strongly linked to its effects. We suggest that a preference for root-simpler explanations follows from the
role of explanations in highlighting and efficiently representing and communicating information that supports

future predictions and interventions.
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Simpler explanations are better explanations. This intuition,
right or wrong, often guides both scientific and everyday reason-
ing, earning the moniker “Ockham’s Razor” for the unnecessary
complexities that it “cuts” out of explanations. While simplicity is
lauded by both scientists and philosophers, there is little consensus
on how simplicity should be defined. William of Ockham argued
that we “not multiply entities beyond necessity,” suggesting that
simplicity is a matter of the number of entities involved in an
explanation. Newton’s first Rule of Reasoning in Philosophy is
that “we admit no more causes” than those sufficient to explain our
observations, suggesting causes are the units in which simplicity is
measured. Einstein tells us that “the grand aim of all science . . .
is to cover the greatest possible number of empirical facts . . . from
the smallest possible number of hypotheses or axioms,” suggesting
the size of a set of hypotheses or axioms is what matters (for
quotations, see Baker, 2010).

Beyond these classic examples, contemporary philosophers,
statisticians, and computer scientists have developed formal defi-
nitions of simplicity that can be used to guide theory choice, model
selection, and inference (for review see Sober, 2006). Simplicity is
argued to lead to more accurate inference (Tenenbaum & Griffiths,
2001), better predictions (Forster & Sober, 1994), or more efficient
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learning (Kelly, 2007). These proposals for the virtuosity of sim-
plicity are often grounded in particular formal systems that make
expressing these advantages straightforward: some formulations
include algorithmic information theory and probability (Solo-
monoff, 1960), Kolmogorov complexity (Kolmogorov, 1965), the
cardinality of parameterized models (Akaike, 1974; Schwarz,
1978), and the (possibly implicit) size of the hypothesis space (“the
size principle,” Tenenbaum & Griffiths, 2001). Within psychol-
ogy, these approaches to simplicity have proven useful in model-
ing perceptual classification (Chater, 1996), language (Clark,
2001), and the perception of hierarchically structured domains in
general (Feldman, 2009).

While appeals to simplicity are widespread, they are diverse in their
application: different metrics for simplicity can come apart, and these
metrics vary in how well they fit different real-world applications. For
example, Kolmogorov Complexity identifies simplicity with the min-
imal length of code required to encode a program that generates a
particular object in a universal descriptor language. This metric can be
readily applied to problems that involve predicting the next element in
a sequence composed of characters from a fixed alphabet (e.g.,
predicting the next letter in the sequence “banan_). But some sce-
narios cannot be easily framed as sequences of this type. Nonetheless,
people reason about such scenarios.

Thus, though formal approaches to defining simplicity in
well-specified domains have been fruitful, research on intuitive
judgments of simplicity in everyday explanations has made con-
siderably less progress. This is unfortunate, as explanation is a
ubiquitous phenomenon (Salmon, 1989). People constantly ex-
plain the social and physical world around them, and their explan-
atory choices have important consequences in a variety of domains
(Keil, 2006; Lombrozo, 2007, 2012, 2016). For instance, explana-
tions for our own and others’ behavior can affect judgments of
responsibility and blame (Dweck, 2008; Malle, 2011; Monterosso,
Royzman, & Schwartz, 2005; Kim & Ahn, 2002), and clinicians’
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explanations for a patients’ behavior can affect diagnoses and
treatment decisions (Ahn & Kim, 2008; Ahn, Novick, & Kim,
2003; Ahn, Proctor, & Flanagan, 2008; Kim & Ahn, 2002). If
people prefer simpler explanations in these domains—and there’s
reason to think that they do (Frances & Egger, 1999; Kelley, 1973;
Read & Marcus-Newhall, 1993)—it’s especially important to pro-
vide a more precise characterization of simplicity in explanations,
and to better understand the implications of a preference for
simpler explanations.

In this article, we consider the nature and role of simplicity in
human judgment, focusing on the explicit evaluation of causal
explanations, such as explanations for symptoms that appeal to
underlying diseases. In four experiments, we address the following
questions about simplicity in the context of causal explanation and
its role in human cognition:

Q,: What makes a causal explanation simple?

Q,: How are explanations selected when the simplest expla-
nation is not the one best supported by the data?

Q;: What are the cognitive consequences of a preference for
simpler explanations? For example, does the preference bias
memory or inference?

Q,: Why do people prefer simpler explanations?

We begin by differentiating two metrics for simplicity, node
simplicity versus root simplicity, and motivate these questions in
light of prior research. We then report four novel experiments.

Defining Simplicity: Node Versus Root Simplicity

Ockham’s razor canonically applies to arguments about the
number of entities or the number of kinds of entities postulated to
exist, a notion that is often referred to as “parsimony.” In contrast,
previous work on simplicity in causal explanatory judgments has
typically focused on “elegance” (Baker, 2010), where the kinds of
causes are known (e.g., which diseases exist), and competing
explanations differ in which of these causes they invoke in a given
case (e.g., stating that a disease is present to explain a given
patient’s symptoms). In this work, simplicity has been measured in
terms of the number of causes invoked in the explanation
(Bonawitz & Lombrozo, 2012; Lagnado, 1994; Lombrozo, 2012;
Read & Marcus-Newhall, 1993; Thagard, 1989)." We call this
metric node simplicity, as it involves counting the total number of
causal nodes that are cited as present causal entities (as opposed to
absent or unspecified entities) in the explanation.

To illustrate node simplicity, consider the case of Chris, who has
been extremely fatigued and has been losing weight. What explains
these symptoms? Chris could have chronic fatigue syndrome, an
explanation which invokes one cause to account for both symptoms.
Another possibility is insomnia (to explain the fatigue) and a decrease
in appetite (to explain the weight loss), thereby invoking mwo causes.
On the grounds of node simplicity, the first explanation is preferable
to the second—one disease is fewer than two diseases. Read and
Marcus-Newhall (1993) and Lombrozo (2007) found that when the
probabilities of the corresponding explanations were unspecified,
participants preferred explanations consistent with this metric—that
is, they preferred to explain multiple symptoms with the smallest
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number of diseases. However, both Lagnado (1994) and Lombrozo
(2007) found that this preference was eliminated or tempered when
the simplest explanation was not the most likely. In the case of Chris,
chronic fatigue syndrome could in fact be less common than having
the conjunction of insomnia and a decreased appetite (if, e.g., Chris
happens to belong to a population of particularly sleepless and sated
people).

Both Lagnado (1994) and Lombrozo (2007) investigated people’s
explanatory preferences in cases where simplicity and probability
were in conflict, using disease examples similar to those described
above. Both researchers found that when a complex explanation was
explicitly identified as more likely than a simpler alternative, partic-
ipants chose the more probable explanation. However, Lombrozo
(2007) additionally examined cases in which participants were pro-
vided with more indirect probabilistic cues: the base-rate of each
disease. While this information was sufficient to evaluate the relative
probabilities of the explanations (under assumptions about indepen-
dence between the diseases), participants’ choices were nonetheless
influenced by simplicity. In particular, participants had an overall
preference for the simpler (one-cause) explanations, but this prefer-
ence was tempered by probability information. This generated a
pattern of judgments consistent with the interpretation that simplicity
altered the prior probability assigned to explanations, with very strong
probabilistic evidence required to overcome this initial bias. Bonawitz
and Lombrozo (2012) found a similar pattern of results in preschool-
aged children.

This previous work establishes that simplicity is a powerful
force in determining explanatory preferences, but no empirical
research (to our knowledge) has attempted to differentiate alter-
native metrics for simplicity in explanation choice. This is prob-
lematic given that prior results are not uniquely consistent with
node simplicity. We propose an alternative metric that can also
explain these results, which we call root simplicity. Informally,
root simplicity can be defined in terms of the number of assumed
or unexplained causes in an explanation, where simpler explana-
tions are those with fewer assumed or unexplained causes (which,
for present purposes, we treat as interchangeable). We call this
metric root simplicity to reflect the fact that among the causes
present in an explanation, the root causes are the initiating vari-
ables (i.e., the topmost nodes that cannot themselves be explained
by reference to the presence of other causes).

This metric is related to a number of proposals from philosophy
and the history of science concerning the value of simplicity and
the goals of scientific theorizing, though they have not always been
expressed in terms of root causes. For example, the quote from
Einstein included above indicates a preference for a small number
of axioms, where axioms are similarly “assumed” or unexplained.
Relatedly, Friedman (1974) endorses explanations that unify phe-
nomena with few assumptions, saying “science increases our un-
derstanding of the world by reducing the total number of indepen-
dent phenomena that we have to accept as ultimate or given”
(emphasis added). Friedman has in mind explanations for different
types of properties or events. If we instead consider the enumerated

! Strictly speaking, Read and Marcus-Newhall (1993) and Thagard
(1989) quantified simplicity in terms of the number of propositions in-
volved in an explanation. However, in the stimuli used in Read and
Marcus-Newhall (1993), each proposition corresponded to the presence of
a cause.
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ROOT SIMPLICITY

number of phenomena that are given or assumed, this maps
roughly onto the number of causes that are given or assumed in
explaining a token event, which corresponds to root simplicity as
we have defined it.”

Although the materials from Read and Marcus-Newhall (1993) and
Lombrozo (2007) do not differentiate between node and root simplic-
ity (both metrics predict the same judgments), there are cases for
which these two metrics diverge. To illustrate, consider that depres-
sion is a known cause of both insomnia and loss of appetite, and
suppose that we know that Billy does not have Chronic Fatigue
Syndrome. This leaves us with the following two explanations for
Billy’s fatigue and his decreased appetite: insomnia and loss of
appetite, which were themselves caused by depression, or insomnia
and loss of appetite, which were not caused by depression and instead
arose independently (see Figure 1). We call the first explanation the
complete-choice because it includes the complete set of possible
causes, and the latter explanation the proximal-choice because it
includes only the most proximal causes (i.e., only the causes that
directly generated the tiredness and weight-loss).?

In this scenario, node and root simplicity diverge. Node simplicity
would say that the complete-choice has a measure of three (because it
cites all three causes) and the proximal-choice a measure of two
(because it cites two causes). Thus, if people employ node simplicity
in evaluating explanations, they should prefer the proximal-choice
explanation. However, according to root simplicity, the complete-
choice has a measure of one (because we only assume that Billy is
depressed) and the proximal-choice has a measure of two (because it
assumes that Billy independently developed both insomnia and a
reduced appetite). Root simplicity, in contrast to node simplicity,
favors the complete-choice explanation.

As a second example of a scenario for which node and root
simplicity generate divergent predictions, consider two candidate
explanations for a heart attack. In one case, the cause is heart

Proximal

Complete

(a)

Depression Depression

Reduced
appetite

Reduced
appetite

True True

Tired,
Weight
Loss

Tired,
Weight
Loss

True, True True, True

Figure 1. Illustrations of graphs corresponding to the complete (a) and
proximal (b) explanations. Each circle is a variable or set of variables (e.g.,
disease or symptom set). The value of the node is indicated below the node;
in this case nodes have values of present or not present. Arrows indicate
potential causal relationships. Gray-filled circles indicate that the node’s
value has been observed.
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disease, which is itself caused by metabolic syndrome (the
complete-choice explanation). In the second case, the proximal
cause is heart disease, but where the heart disease was not caused
by metabolic syndrome—it is itself assumed or unexplained (the
proximal-choice explanation). In this case, node simplicity favors
the proximal-choice explanation (one cause is fewer than two), and
root simplicity does not predict a preference for either explanation
(in both cases, the causal chain has one assumed cause).
Examples like these, for which the two metrics predict different
preferences, allow us to investigate whether node or root simplicity
better characterizes people’s explanatory preferences and thus
address our first research question (Q,): what makes an explana-
tion simple? Moreover, by varying the probabilistic evidence for
different explanations using structures like those just discussed, we
can address our second question (Q,): how are explanations se-
lected when the simplest explanation is not the one best supported
by the data? These questions are the focus of Experiments 1-2.

The Cognitive Consequences of a Preference for
Simpler Explanations

What are the implications of a preference for simpler explana-
tions? Previous research has shown that the act of explaining can
impact both learning and inference (e.g., Koehler, 1991; Sherman,
Skov, Hervitz, & Stock, 1981; for reviews, see Lombrozo, 2012,
2016). Lombrozo (2007) found that participants who preferred an
unlikely but simple explanation overestimated the observed fre-
quency of the disease invoked in that simple explanation. How-
ever, Lombrozo (2007) did not differentiate node and root sim-
plicity or go beyond an association to demonstrate a causal
relationship between the act of explaining and the systematic
estimation errors exhibited by some participants. Here, we vary the
order in which participants explain and estimate to isolate the
causal influence (if any) exerted by explanation on estimation.
This allows us to address one aspect of our third research question

2 It is important to note that unexplained causes are not conceptually the
same as independent causes. For instance, the two unexplained causes of
“insomnia” (to explain fatigue) and “decreased appetite” (to explain weight
loss) could be probabilistically dependent. In our experiments, however,
these two conceptually distinct notions are related, as the presence of a
common cause “‘explains” two downstream causes as well as rendering
them probabilistically dependent (both on each other and on the common
cause). While explanatory and probabilistic dependence could be teased
apart, there are some challenges to doing so: probabilistic dependence
typically suggests some underlying structure (such as a direct causal
relationship or an unknown common cause) that would support explana-
tions. For present purposes, we define root simplicity in terms of which
causes are unexplained, but are open to the possibility that constraints on
what constitutes an unexplained cause will bring in considerations of
probabilistic (in)dependence.

3 We are contrasting the cases where something is present and where
something is not present. Thus, ours is a discussion about a sharp Ock-
ham’s razor, which actively states that variables are not present, as opposed
to a dull Ockham’s razor, which is silent as to the presence or absence of
variables (Sober, 2006). This assumption plays a role in our later analyses,
which involve comparing evidential support for different explanations. A
hypothesis consistent with a dull Ockham’s razor will include the possi-
bility that the variables in question are present, and (assuming it is possible
that the variable is not present) will always have greater probability than
the hypothesis that the variable is present. This distinction echoes the
debate between Popper and Jeffreys on simplicity in the context of the prior
probability of various statistical models (cf., Baker, 2010).
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(Q3): what are the cognitive consequences of a preference for
simpler explanations? This is the focus of Experiment 3.

Why Do People Prefer Simpler Explanations?

Finally, why do people prefer simpler explanations? One possibil-
ity is that a preference for simpler explanations is just a human
failing—perhaps a mostly harmless side effect of limited cognitive
resources. Another possibility, however, is that favoring simpler ex-
planations serves a useful cognitive function. This possibility is sug-
gested by arguments in favor of simplicity in philosophy and statis-
tical inference (Baker, 2010; Jeffreys, 1998; Kitcher, 1989)—some
even arguing that simplicity is a foundational principle through which
all of cognition can be understood (Chater, 1999; Chater & Vitanyi,
2003). However, even among those who agree on simplicity’s value,
it serves no single, agreed-upon role. Different roles have been pro-
posed, and each proposal constrains (and is constrained by) the metric
used to define “simplicity” (e.g., Akaike, 1974; Chater, 1999; Chater
& Vitanyi, 2003; Jeffreys, 1998; Kelly, 2007; Popper, 1959).

The possibility we explore is that one function of explanation is to
facilitate the formation of relevant, information-rich representations of
causal systems, where these representations are tailored to aiding
future intervention and prediction in a variety of situations more
general than the set of scenarios for which the explanation was
originally invoked (Gopnik, 2000; Hacking, 1983; Lombrozo &
Carey, 2006). If this is the case, a preference for simpler explanations
could exist to support the acquisition, deployment, or communication
of these representations. We revisit these ideas in Experiment 4,
where we tackle our final question (Q,): why do people prefer simpler
explanations?

Experiment 1

In Experiment 1 we test the predictions of node simplicity versus
root simplicity against human judgments. Participants learn one of
two causal structures involving novel diseases and are asked to
provide the most satisfying explanation for an individual’s symptoms.
The causal structures are designed to support two alternative expla-
nations for which node and root simplicity generate divergent rank-
ings. In Experiment 1 we do not provide information about the
relative probabilities of different explanations. However, we introduce
this information in Experiment 2.

Method

Participants. Sixty-eight participants were recruited online us-
ing Amazon Mechanical Turk and paid $.60 for their participation. Of
these, 53% passed reading checks described below, leaving 36 par-
ticipants for analysis. Participation was restricted to individuals with
IP addresses from the United States and with approval ratings of 95%
or higher on previous tasks completed through Amazon Mechanical
Turk.

Conducting an a priori power analysis was challenging because
there is not much related work on the topic of simplicity in causal
explanation. The experiment that most closely resembles Experiment
1 is the first experiment from Lombrozo (2007). We therefore con-
ducted a power analysis based on the data reported in this experiment,
which had an observed proportion of 96% of participants choosing an
explanation with one cause rather than an explanation with two
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causes. By contrasting this against a comparison proportion of .5 (a
uniform choice between two options) using a one-sample chi-squared
test, to obtain a power of B = .8 with an a = .05, we needed 9
participants. This places our sample size per condition at twice the
sample size indicated by this power analysis, suggesting that we have
sufficient power in this study.

Materials and procedure. Participants were asked to imagine
that they were doctors on an alien planet, Zorg. Their task was to
assist in the diagnosis of alien diseases. Participants read information
about the causal relationships between diseases that afflict the aliens
living on Zorg. This causal information varied across the diamond-
structure and chain-structure conditions.

Each participant learned about two symptoms that were chosen at
random, one from a set of meaningful symptoms (“purple spots,”
“low fluid levels,” “cold body temperature”) and one from a set of
“blank” symptoms (“itchy flippets,” “swollen niftles,” and “sore
mintels”; see Lombrozo, 2007). For ease of presentation, we use
purple spots and itchy flippets as sample symptoms throughout the
article.

In the chain-structure condition, there were two diseases, Hum-
mel’s disease and Tritchet’s disease, that could cause these symptoms
under some conditions. Specifically, participants read the following
information:

Tritchet’s disease always causes itchy flippets and purple spots. One of
several ways to contract Tritchet’s disease is to first develop Hummel’s
disease, which causes Tritchet’s disease. Aliens can also develop Tritch-
et’s disease independently of having Hummel’s disease. Nothing else is
known to cause itchy flippets and purple spots, that is, only aliens who
have Tritchet’s disease develop itchy flippets and purple spots.

In the diamond-structure condition, there were three diseases,
Hummel’s disease, Tritchet’s disease, and Morad’s disease. Partici-
pants in the diamond-structure condition read the following informa-
tion:

Morad’s disease and Tritchet’s disease together always cause itchy flip-
pets and purple spots. If either disease is not present, neither symptom
will occur.

One of several ways to contract Tritchet’s disease and Morad’s disease is
to first develop Hummel’s disease, which causes both Tritchet’s disease
and Morad’s disease. Hummel’s can only cause both of these diseases or
neither of them. It will never cause just Morad’s disease or just Tritchet’s
disease.

Aliens can also develop Tritchet’s disease and/or Morad’s disease inde-
pendently of having Hummel’s disease.

Nothing else is known to cause itchy flippets and purple spots, that is,
only aliens who have Tritchet’s and Morad’s disease develop itchy
flippets and purple spots.

We chose these structures because node and root simplicity support
different predictions across these cases. As illustrated in Figure 2,
node simplicity always supports a preference for the Proximal case
regardless of structure as there is always one less node taken to be true
(diamond: complete, 3 vs. proximal, 2 and chain: complete, 2 vs.
proximal, 1). The predictions supported by root simplicity differ
between the two structures. In the diamond-structure condition, root
simplicity favors choosing the Complete explanation over the Proxi-
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Diamond Chain
Complete Proximal Complete Proximal
Node: 2 Node: 1
Root: 1 Root: 1
True False
True True
True, True True, True True, True True, True

Figure 2. llustration of the different predictions supported by root and node simplicity for the diamond and
chain cases. H = Hummel’s disease; M = Morad’s disease; T =Tritchet’s disease; S; and S, = two symptoms

in question.

mal explanation (3 vs. 2). In the chain-structure condition, root sim-
plicity treats the two explanations equivalently (1 vs. 1).

Explanation choice. Participants in both conditions were told
that a particular alien, “Treda,” was suffering from the two symptoms.
They were asked to choose what they thought was the “most satisfy-
ing explanation” for the symptoms from a set of three explanations:
the proximal-choice explanation (which included only proximate
causes of the symptoms), the complete-choice explanation (which
included all the causes they learned about), and an unknown cause
explanation (see Table 1). They could select only one of the three
response options. The order in which these explanations appeared was
independently, randomly sampled from a uniform distribution over all
possible orderings for each participant.

Explanation choice justifications. After indicating their expla-
nation choice, participants were asked: “Why did you choose this
explanation?” and could type a few sentences in a text box. We call
this the justification of their explanation choice.

Reading Checks. Throughout the experiment, participants
were asked a series of questions probing whether they accu-

Table 1

rately understood the causal information presented to them and
ensuring they were reading the scenario closely. For example,
in the chain-structure condition participants were asked whether
it is possible to develop Tritchet’s disease without having
Hummel’s disease (the answer is “yes”). If participants failed
any reading checks their data were excluded from analyses (but
see the online supplementary materials, Part D for analyses for
all experiments involving less stringent exclusion criteria). The
full set of reading checks and exclusion criteria can be found in
the online supplementary materials, Part A, along with the
proportion of participants failing reading checks across all
experiments.

Results

Explanation choices. No participants selected the unknown
cause explanation. As a result, a percentage of participants select-
ing the complete-choice (e.g., 80%) implies that the remaining
participants (e.g., 20%) selected the proximal-choice. Overall,

Explanation Choices, Prompts, and Response Options: Sample Stimuli From Experiment 1

Type of
explanation

choice Chain-structure

Diamond-structure

Prompt: What do you think is the most satisfving explanation for the symptoms Treda is exhibiting?

Complete-choice  Treda has Hummel’s disease, which caused Tritchet’s disease, Treda has Hummel’s disease, which caused Tritchet’s disease

which caused the itchy flippets and purple spots.
Proximal-choice
and purple spots.

Unknown
of the aforementioned diseases.

Treda does not have Hummel’s disease, and independently
developed Tritchet’s disease, which caused the itchy flippets

Treda developed itchy flippets and purple spots but has neither

and Morad’s disease, which together caused the itchy
flippets and purple spots.

Treda does not have Hummel’s disease, and independently
developed Tritchet’s disease and Morad’s disease, which
together caused the itchy flippets and purple spots.

Treda developed itchy flippets and purple spots but has none of
the aforementioned diseases.

Note. Participants were randomly assigned to either the chain-structure condition or the diamond-structure condition; the explanation labels (e.g.,
complete-choice) were not presented to participants. The bolded words in the table are the diseases from our stimuli as styled when presented to participants.
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participants selected the complete-choice 44% of the time in
chain-structure, and 83% of the time in diamond-structure. We
analyzed responses with x* tests.

Participants selected the proximal-choice and the complete-
choice about equally often in the chain-structure condition,
x>(1) = 0.22, ¢ = 0.08, p > .5, but selected the complete-
choice significantly more often than the proximal-choice in the
diamond-structure condition, x*(1) = 8.00, p < .01. Reponses
across the two causal structure conditions additionally differed
significantly from each other, x*(1) = 5.89, ¢ = 0.40, p < .05,
with the complete-choice chosen more often in diamond-
structure than in chain-structure. These findings are consistent
with the predictions of root simplicity, but not with the predic-
tions of node simplicity.

Explanation choice justifications. Three coders classified
all participants’ justifications for their explanation choices into
one of four coding categories: “simplicity,” “probability,
understood,” and “other.” Justifications that explicitly appealed
to simplicity, complexity, or the number of causes included in
the explanation were coded as “simplicity.” Justifications that
referred to one of the options as being more “probable” or
“likely” than the others were classified as “probability.” Expla-
nations that suggested the participant misunderstood some as-
pect of the experiment were classified as “misunderstood,” and
participants whose explanations fell into this category were
excluded from additional analyses. For example, a participant
would be classified as “misunderstood” in the chain-structure
condition if she indicated that Treda must have Tritchet’s
disease and Hummel’s disease because that is the only way to
develop the symptoms. Finally, justifications that did not fall
into one of the previous designations were classified as “other.”
Many of these restated the explanation choice (e.g., “Treda had
Tritchet’s disease and Hummel’s disease which caused itchy
flippets and purple spots”), or provided a response that appealed
to neither simplicity nor probability, such as “it’s what I re-
member reading from the paragraph,” or claiming that it made
most sense. Disagreements between coders were resolved in
favor of the majority, with rare three-way ties resolved through
discussion (Fleiss k = 0.63, z = 13.19, p < 10~ %).

Overall, 11% of participants justified their choice by appeal to
Simplicity, 33% by appeal to Probability, 0% were classified as
misunderstood, and the remainder, 56%, fell under Other. The
distribution of justifications did not vary as a function of causal
structure; in fact, the frequencies of response types were identical
across the two conditions. Of the small number of justifications
that did appeal to simplicity (N = 4), two were used to support the
proximal-choice in the chain-structure condition, none to support
the complete-choice in the chain-structure condition, one to sup-
port the proximal-choice in the diamond-structure, condition, and
one to support the complete-choice in the diamond-structure con-
dition.

99 ¢

mis-

Discussion

The findings from Experiment 1 challenge the predictions of
node simplicity but support those of root simplicity. Had par-
ticipants been selecting explanations according to node simplic-
ity, they should have preferred the proximal-choice (i.e., the
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explanation with fewer causes) in both conditions. Instead,
participants were equally likely to choose the proximal-choice
and the complete-choice in chain-structure, and significantly
less likely to choose the proximal-choice in diamond-structure.
These findings conform to the predictions of root simplicity
(i.e., that people will prefer explanations with fewer unex-
plained causes), and thereby suggest that root simplicity better
describes people’s explanatory preferences than node simplic-
ity, at least in these cases.

It is worth noting that only a small minority of participants
(11%) explicitly justified their explanation choice by appeal to
simplicity. This suggests that although root simplicity fits nat-
urally within a philosophical and scientific tradition of charac-
terizing simplicity, it may not correspond to laypeople’s explicit
beliefs about the extension of the term. Such a mismatch
between intuitive judgments and explicit justifications is un-
likely to be unique to simplicity in the evaluation of causal
explanations—simplicity is invoked in explaining perceptual
interpretations and concept learning (Feldman, 2000), for ex-
ample, although it seems unlikely that participants would attri-
bute their interpretation or inference to simplicity itself.

Experiment 2

While Experiment 1 challenges the claim that people choose
explanations on the basis of node simplicity, the findings cannot
differentiate two possibilities for why judgments were consis-
tent with root simplicity. First, it could be that participants’
explanatory preferences were a consequence of evaluating each
explanation’s root simplicity per se. Second, it could be that
participants’ preferences did not result directly from a prefer-
ence for root-simpler explanations, but instead from assump-
tions about the relative probabilities of the complete-choice and
the proximal-choice explanations; assumptions that happened to
align with root simplicity. For example, participants could have
assumed (in diamond-structure) that Morad’s and Tritchet’s
diseases were unlikely to co-occur except in the presence of
Hummel’s disease, and therefore opted for the complete-choice
over the proximal-choice on purely probabilistic grounds (i.e.,
without any recourse to simplicity per se). In Experiment 2, we
address this possibility by providing frequency information to
indicate how often different diseases occur together in the
population at large. This allows us to flexibly adjust the base-
line probability of alternative explanations before soliciting
participants’ explanation choices.

In the present experiment we did not present participants with
isolated base-rates (as in Lombrozo, 2007), but instead with fre-
quency information that represented the full joint distribution on
diseases. Participants first learned a causal structure (chain-
structure or diamond-structure) and then observed a random sam-
ple of aliens from the full population. Each alien’s disease status
(present/absent) was indicated for all diseases. By varying the
disease status of the sampled aliens, we could control the relative
probabilities of the proximal-choice and the complete-choice ex-
planations for the target alien’s symptoms, which participants were
asked to explain as in Experiment 1. In this way participants
received the frequency information necessary for assessing the
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probability of each explanation without being told, explicitly,
which explanation was most likely.*

Finally, this design allowed us to investigate the effects of
explanation choice on memory for frequency information. After
the explanation choice task, participants reported back the number
of times they remembered having previously observed each com-
bination of diseases in the alien population. Lombrozo (2007)
found that some participants who selected simple explanations
(specifically, those who selected simple explanations which were
unlikely to be true) overestimated the frequency of the disease that
figured in the simple explanation. Experiment 2 allowed us to
investigate whether this effect would extend to cases in which
participants were presented with information about the full joint
distributions of diseases. It also provided an additional opportunity
to differentiate root and node simplicity: if simplicity drives biases
in memory for the frequency of causes invoked in simple expla-
nations, these biases should track the simplicity metric that informs
people’s explanation choices.

Method

Participants. Using Amazon Mechanical Turk, 575 partici-
pants were recruited online as in Experiment 1. Of these, 50.6%
passed the reading checks described below, leaving 291 partici-
pants for analysis.

We conducted a power analysis for this study based on the
findings from the diamond condition of Experiment 1. If we
consider the population size needed to achieve a power of B = 0.8
and a = .05 based on a chi-squared test in the case where the data
we present suggests (a priori) that complete and proximal expla-
nations are equally likely, we obtain an estimate of 18 participants
in that condition. This suggests that, with our average number of
participants per condition of 29.1, we had sufficient power in
Experiment 2.

Materials and procedure. Experiment 2 followed the mate-
rials and procedure from Experiment 1 closely. However, before
participants were told about Treda and asked to make an explana-
tion choice, they were provided with information about the fre-
quencies at which the different diseases co-occurred. Specifically,
participants observed 120 aliens that were described as having
been randomly sampled from the population and tested for the
presence of each disease. Participants were taught how to interpret
images with multiple aliens, with the boxes below each alien
indicating the presence or absence of the disease with the corre-
sponding initial letter (see Figures 3a and 3b). If a box was yellow,
that meant that the alien above had the disease indicated by that
initial. Otherwise, the alien did not have that disease. Participants
were tested to ensure that they understood the representation
system as part of our larger set of reading checks.

Participants were told that “the particular incidence rates of
these diseases are unknown,” but that “to address this issue, the
hospital you work in is running diagnostic tests on a random
sample of the population” (for complete instructions, see the online
supplementary materials, Part B). The aliens were then presented
in 12 groups of 10, with each group appearing for 3.5 seconds
between 2-s breaks. In pilot testing we confirmed that these inter-
vals allowed participants to view all aliens while discouraging
explicit counting.
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We varied the actual frequency information that participants
viewed across five between-subjects conditions, the 3:1, 2:1, 1:1,
1:2, and 1:3 conditions, named for the corresponding ratios of the
degree to which the evidence supports choosing the proximal-
choice versus complete-choice (all frequency counts can be seen in
Table 2). To compute these support ratios, we defined the prob-
ability of an explanation as the percentage of times that the exact
pattern of diseases corresponding to that explanation appeared in
the data that participants observed. For example, in the chain-
structure in the 3:1 condition, the support ratio is:

P(proximal|data) : P(complete|data)
= P(_|H, T|D3:1, S) : P(H,T‘lD:;:I7 S) =3: 1,

where

e H and T mean that Treda has Hummel’s disease and

Tritchet’s diseases,

e — is the negation operator,

* D, is the frequency data from the 3:1 condition,

» and § indicates the presence of the observed symptoms.

Analogously, in diamond-structure the support ratio would be

between

P(_|H,T,M|D3:1,S):P(H, T,MlDS:],S) =3:1.

The frequencies in Table 2 were chosen such that the number of
cases supporting the proximal-choice versus complete-choice cor-
responded to the support ratio appropriate for each condition, and
for diamond-structure, so that the frequencies of M and T were
equally likely and approximately conditionally independent given
—H (to avoid inadvertently suggesting that there existed an addi-
tional common cause for these diseases’ co-occurrence).

Explanation choice. As in Experiment 1, participants were
asked to identify the most satisfying explanation for Treda’s two
symptoms.

Explanation choice justification. Also as in Experiment 1,
we asked participants to justify their choice in a free-response
format.

Estimated frequency counts. Participants were told that they
originally observed 120 aliens and asked to indicate how many of
these observed aliens belonged to each diagnostic option (pre-
sented with its corresponding image), with four possible disease
combinations in chain-structure (e.g., H but not T) and eight in
diamond-structure (e.g., H, M, and T).

Reading checks. The reading checks from Experiment 1 were
employed again in Experiment 2. In addition, if participants’
responses to the frequency estimate question did not add up to 120
(the correct number) or to 100 (implying a probabilistic interpre-
tation of the question, which we renormalized to add up to 120),

“It is worth noting that the central findings from Lombrozo (2007)
involved two sources of probabilistic uncertainty. On the one hand, par-
ticipants may have been unsure whether the two diseases in the two-disease
condition were probabilistically independent, and therefore whether their
joint probability was well approximated by the product of their probabil-
ities. On the other hand, participants’ “uncertainty” could have stemmed
from a more global tendency to rely on an intuitive evaluation of proba-
bility when one has to deal with a complex evaluation of multiple sources
of evidence. In Experiment 2, we isolate the role of the latter source of
uncertainty by eliminating the first: we present participants with data about
the full joint probability distribution for the diseases relevant to chain-
structure and diamond-structure.
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(a) Example of a group of 10 aliens from chain-structure. (b) Example of a group of 10 aliens from

diamond-structure. Yellow boxes indicate the presence of a disease. For example, the top right alien in 2b has
Tritchet’s disease (T) and Morad’s disease (M), but not Hummel’s disease (H).

they were excluded for failing to follow instructions, and because
their inclusion would considerably complicate the analysis and
interpretation of the data.

Results

Explanation choices. All participants who passed the reading
checks selected either the proximal-choice or complete-choice
explanations. To analyze explanation choices, we first computed
the logarithm of the support ratio (log-support-ratio) in each
condition. The log-support-ratio should account for explanation

Table 2

The Frequencies With Which Each Disease Combination was
Presented for Each Support Ratio for the Diamond-Structure
(Experiments 2 and 3) and Chain-Structure (Experiment

2) Conditions

Frequency
Event type 3:1 2:1 1:1 1:2 1:3
Experiments 2 and 3: Diamond-structure

—H, =M, —T 7 17 33 50 57
—H,M, T 54 36 18 9 6
H, -M, —T 1 1 1 1 1
H MT 18 18 18 18 18
—H, M, =T 20 24 25 21 19
—H, =M, T 20 24 25 21 19
H, M, =T 0 0 0 0 0
H, -M, T 0 0 0 0 0

Experiment 2: Chain-structure

choices under two assumptions: first, that participants’ explanation
choices were a function of the true frequency information pro-
vided, and not (e.g.) a preference for node or root simplicity, and
second, that participants “probability matched”—that is, that they
chose explanations in proportion to their probability of being true,
which is a common strategy in many human judgments (cf. Eber-
hardt & Danks, 2011) and was a useful assumption in interpreting
the findings from Lombrozo (2007) and Bonawitz and Lombrozo
(2012). A systematic deviation from the explanation choices pre-
dicted by probability matching would therefore suggest that some-
thing other than frequency information (e.g., root simplicity) plays
a role in explanation choice.

We conducted a regression (a generalized linear model) on
explanation choices with three predictors: log-support-ratio, a
categorical variable designating each participant’s structure
(chain-structure or diamond-structure), and an interaction term to
assess whether participants used frequency data differently across
structures.

The regression, with the proportion of complete-choice selec-
tions as the dependent variable, revealed no significant intercept,
#(287) = —0.286, B = —0.0515, p > .7, a significant coefficient
for log-support-ratio, t(287) = 5.110, B = 1.185, p < 1074, a
significant effect of the categorical variable corresponding to
causal structure, #(287) = 3.299, B = 0.849, p < .001, and a
significant interaction between log-support-ratio and causal struc-
ture, #(287) = —2.075, B = —0.6811, p < .05 (see Figure 4).°

The effect of log-support-ratio suggests that frequency infor-
mation had a significant effect on participants’ explanation
choices, increasing the probability of choosing the complete-
choice explanation when it was more frequent in past observations.
However, the interaction between log-support-ratio and causal
structure suggests that the influence of frequency information on

—H, =T 47 65 83 92 95
—H, T 54 36 18 9 6
H, —T 1 1 1 1 1
H, T 18 18 18 18 18
Note. All columns add to 120 (the total sample). H = Hummel’s disease;

“_

M = Morad’s disease; T = Tritchet’s disease; “—" indicates the absence of
a disease.

3 Technically, this analysis necessitates calculating different interaction
effects at each point in question (see Ai & Norton, 2003); however, an
interaction effect at the intercept is sufficient for our purposes.
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Figure 4. Graph of explanation choices, % of Participants Choosing
Complete X Support Ratio (mapped to the x-axis as log(Y/X) for Y:X,
centered at 0 = log(1/1)).

explanation choices was not equivalent across conditions. We
therefore conducted two subsequent regression analyses, treating
participants from chain-structure and diamond-structure indepen-
dently.

For chain-structure, the analysis revealed no significant inter-
cept, B = —0.0515, #«(151) = —0.2861, p > .7, but a significant
effect of log-support-ratio, (151) = 5.110, B = 1.186, p < 10~ *.
The coefficient for log-support-ratio did not differ significantly
from 1 (95% confidence interval [0.722, 1.650]). This analysis
suggests that participants’ explanation choices in chain-structure
were well captured by probability matching based on the fre-
quency information that participants received. In other words, the
data from chain-structure provide no evidence of a preference for
either the proximal-choice or complete-choice explanations (above
and beyond their frequency), which contrasts with the predictions
of node simplicity, but is consistent with those of root simplicity.

For diamond-structure, an equivalent analysis revealed a signif-
icant intercept, B = 0.797, #(136) = 4.224, p < 10~ %, as well as
a significant effect of log-support-ratio, p = 0.504, #(136) =
2.192, p < .05. In this case, the coefficient for log-support-ratio
did differ from 1 (95% confidence interval for 3 = [0.044, 0.965]).
These results suggest that log-support-ratio accounted for some
variation in explanation choices, but that participants were signif-
icantly more likely to choose the complete-choice explanation than
expected on the basis of the frequency information alone. An
analysis of the nonzero intercept suggests that participants effec-
tively operated with a prior probability of 0.69 (95% confidence
interval for § = [0.603, 0.764]) favoring the explanation deemed
simpler according to root simplicity. This concords with the esti-
mates of the prior probability of a simpler explanation as reported
in Lombrozo (2007). These findings also challenge the predictions
of node simplicity, but support those of root simplicity.

Deviations from the predictions of log-support-ratio in diamond-
structure were not uniform across support ratios. Post hoc, one-
sample ¢ tests comparing the proportion of complete-choice expla-
nations for each log-support-ratio to the proportion expected from

probability-matching revealed significantly higher selection of the
complete-choice explanations in the 3:1, #27) = 2.619, Cohen’s
d = 1.008, p < .01; 2:1, 1(28) = 4.071, Cohen’s d = 1.539, p <
10™%; and 1:1, #(25) = 2.746, Cohen’s d = 1.098, p < .01, cases,
but not for 1:2, #(27) = 0.535, Cohen’s d = 0.205, p > .5; or 1:3,
#(26) = 0.333, Cohen’s d = 0.131 p > .7. In other words,
participants’ explanation choices involved a significant departure
from the predictions of probability matching only when frequency
information did not favor the root-simpler explanation.

Explanation choice justifications. Explanation choice justi-
fications were coded as in Experiment 1 (see also the online
supplementary materials, Part C). There was moderate agree-
ment among the raters (returning all instances of “Misunder-
stood” to the dataset that were not excluded for other reasons;
Fleiss k = 0.4415, z = 2946, p < 10~%). The distribution of
explanation justifications can be found in Table 3. We found a
significant difference between the overall justification distribu-
tions across causal structures, X2(308) = 8.7738, p < .05, with
participants more likely to invoke probability in chain-structure
than in diamond-structure.

As in Experiment 1, the proportion of justifications that ap-
pealed to simplicity was quite small (8%, N = 25). Of these, 14
were used to support the proximal-choice in the chain-structure
condition, zero to support the complete-choice in the chain-
structure condition, eight to support the proximal-choice in the
diamond-structure, condition, and three to support the complete-
choice in the diamond-structure condition.

Reported frequencies: Bias for complete-choice over
proximal-choice. The frequency estimates that participants
reported at the end of the task were analyzed as a function of
both the actual frequencies (corresponding to each log-support-
ratio condition) and participants’ individual explanation
choices. We considered the extent to which participants over-
estimated the complete-choice explanation relative to the
proximal-choice explanation.

First, we computed the rrue difference between the number of
observed cases that corresponded to the proximal-choice explana-
tion and subtracted that from the number of cases corresponding to
the complete-choice explanation for a given support ratio. Next,
we computed an estimated difference by subtracting the number of
proximal-choice-consistent cases that a participant estimated hav-
ing seen from their estimate of the number of complete-choice-
consistent cases. Because estimated difference should reflect a
combination of true difference and any biases in memory or
reporting, we subtracted the true difference from estimated differ-
ence to create a normalized measure of participants’ memory bias
for the complete-choice explanation, which we refer to as bias. A
positive value for the bias term would result from overestimating
the complete-choice-consistent cases or underestimating the

Table 3
Distribution of Explanation Justifications for Experiment 2

Justification type Overall Chain-structure Diamond-structure
Simplicity 8.0% 8.9% 7.2%
Probability 52.4% 58.2% 46.4%
Other 33.1% 29.7% 36.6%
Misunderstood 6.4% 3.1% 9.8%
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proximal-choice-consistent cases (or both), whereas a negative
value suggests the reverse. A perfect estimate would receive a
score of O in all frequency conditions.

We analyzed bias with a linear regression model, using
log-support-ratio and causal structure (chain-structure vs.
diamond-structure) as continuous and categorical independent
variables, respectively, and choosing-complete as a categorical
factor. This analysis revealed a nonsignificant intercept,
1(286) = 0.430, B = 0.695, p > 0.6, a significant effect of
log-support-ratio, 1(286) = —4.553, B = —=7.477, p < .001, a
significant effect of causal structure, #(286) = 2.525, B =
4772, p < .05, a significant effect of choosing-complete,
#(286) = 4.243, B = 8.636, p < 1077, and a significant
interaction between log-support-ratio and causal structure,
1(286) = —3.990, B = —9.051, p < .001. No other interactions
were significant (ps > 0.4). Given the interaction between
log-support-ratio and causal structure, and to facilitate the
interpretation of these results, we conducted follow-up analyses
restricted to each of the causal structure conditions and ana-
lyzed with respect to log-support-ratio and choosing-complete
(see Figure 5).

In the chain-structure condition, the analysis revealed a non-
significant intercept, #(150) = 0.71, B = 140, p > 4, and
significant effects of both log-support-ratio, t(150) = —3.90,
B = —7.079, p < .01, and choosing-complete, t(150) = 2.40,
B = 7.178, p < .05. The more strongly the data supported
choosing complete the less bias we observed, and those who
chose complete were more biased toward complete in their
estimates.

In the diamond-structure condition, the analysis revealed a mar-
ginally significant intercept, #(135) = 1.95, § = 4.402, p < .10,
and significant effects of both log-support-ratio, t(135) = —10.74,
B = —16.684, p < 10~*, and choosing-complete, t(135) = 3.71,
B = 10.19, p < .01. As in chain-structure, the more strongly the
data supported choosing complete the less bias was observed, and
those who chose complete were more biased toward complete in
their estimates. However, as indicated by the original interaction,
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Figure 5. Graph of average bias-for-complete values by support ratio,
split by causal structure and explanation choice.

log-support-ratio had a stronger effect in the diamond-structure
than in the chain-structure.

Discussion

Experiment 2 replicated and extended our findings from
Experiment 1. First, participants were no more likely to select
the proximal-choice explanation than expected on the basis of
probability matching in any condition, challenging the predic-
tions of node simplicity. However, in the diamond-structure
condition, participants were more likely to select the complete-
choice explanation than expected on the basis of probability
matching, consistent with the predictions of root simplicity.
Thus, even when participants are presented with information
that (noisily) supported the alternative hypothesis, we see a
preference for root simplicity. However, as in Experiment 1,
participants rarely justified their explanation choice by explicit
appeal to simplicity.

Second, consistent with the findings from Lombrozo (2007),
participants’ explanation choices were a function of both sim-
plicity and frequency data. In particular, the proportion of
participants selecting the complete-choice explanation was in-
fluenced by log-support-ratio in both chain-structure and
diamond-structure. However, a systematic deviation from the
predictions of probability matching emerged in the three log-
support-ratios involving diamond-structure for which the prob-
ability information did not warrant the complete-choice: the
3:1, 2:1, and 1:1 conditions.

Third, Experiment 2 revealed a systematic bias in memory:
participants who chose the root-simpler explanation sometimes
misremembered their observations as more consistent with the
root-simpler explanation than they in fact were. This bias emerged
in the three conditions for which the evidence did not indepen-
dently support the root-simpler explanation: the 3:1, 2:1, and 1:1
conditions. These were also the conditions for which explanation
choices deviated from probability matching. In Experiment 3, we
consider whether estimation bias was a consequence of partici-
pants’ explanation choices.

Experiment 3

Experiment 2 found that those participants who chose a simple
explanation that was not supported by observed data also system-
atically misremembered the data as more consistent with their
explanation than it actually was (see also, Lombrozo, 2007). This
finding is consistent with the idea that explanation choices can
systematically alter memory, but it could also be that systematic
distortions in memory have implications for explanation choice (or
that both explanation choice and memory for observations have a
common cause).

Here we address these alternatives by varying the order in
which participants choose an explanation and are asked to
estimate the observed frequency data. Those who estimate
before explaining provide a baseline against which we can
compare the estimates of those who explain first. If we find that
memory distortions are larger for participants who explain first
than for those who estimate first, this suggests that the act of
explaining causes (or contributes to) these distortions. If we
instead find that distortions are equivalent in both groups, that
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would suggest that distortions causally contribute to explana-
tion choices and/or that both distortions and explanation
choices have a common cause.

Method

Participants. Three-hundred-eighty-nine participants were
recruited via Amazon Mechanical Turk as in Experiments 1-2. Of
these, 43.2% passed the reading checks, leaving 168 participants
for analysis. This provides 28 participants on average per condition
(for our 6 conditions), which is comparable to Experiment 2’s 29.1
participants on average per condition.

Materials and procedure. The materials and procedure mir-
rored those from the 3:1, 1:1, and 1:3 diamond-structure conditions
of Experiment 2, with the following changes. First, we varied the
order in which participants were asked to provide their explanation
choice and frequency estimates: participants in the explain-first
condition learned about Treda and indicated an explanation choice
before providing frequency estimates (as in Experiment 2). Par-
ticipants in the estimate-first condition were asked to report ob-
served frequencies before they learned about Treda or explained
Treda’s symptoms.

Second, to ensure that there were equal time delays between
observing and reporting frequency data in both ordering con-
ditions, we added an additional explanation choice question
which took the place of the alien explanation choice in the
estimate-first condition. This new question was equivalent to
the explanation choice task in terms of time and structure, but
irrelevant to the subsequent frequency estimation task. We told
participants that a human named Pat was sneezing and asked
them for a diagnosis from the following possibilities: “Pat has
the flu, which caused her sneezing,” “Pat has a cold, which
caused her sneezing,” and “Pat does not have either of these
diseases, her sneezing was caused by something unknown.”
Because this question is irrelevant to the aims of the study, we
do not analyze these data.

Reading checks. Experiment 3 employed the same reading
checks as Experiment 2.

Results

Explanation choices. Explanation choices replicated those of
Experiment 2 (see Figure 6), with a significant intercept (p <
.001), a significant effect of log-support-ratio (p < .005) and no
significant effect of task order (p > .5).°

Explanation choice justifications. Justifications were coded
as in Experiments 1-2, yielding moderate agreement among
coders (k = 0.577, z = 35.58, p < 10~*). The justification
distributions differed between the explain-first and the
estimate-first conditions, x*(185) = 7.9078, p < 0.05, with
participants more likely to provide Other justifications in
estimate-first (see Table 4). As in Experiments 1-2, the pro-
portion of justifications that appealed to simplicity was quite
small (4.8%, N = 9), with the following distribution across
conditions and explanation choices: two were used to support
the proximal-choice in the explain-first condition, two to sup-
port the complete-choice in the explain-first condition, three to
support the proximal-choice in the estimate-first condition, and
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Figure 6. Graph of explanation choices, % of Participants Choosing

Complete X Support Ratio (mapped to the x-axis as log(Y/X) for Y:X,
centered at 0 = log(1/1)).

two to support the complete-choice in the estimate-first condi-
tion.

Frequency estimates: Bias for complete-choice over
proximal-choice. As in Experiment 2, we analyzed the magni-
tude of a bias for the complete-choice (see Figure 7). We used
task-order, choosing-complete, log-support-ratio, and paired inter-
actions between these variables as predictors of the extent to which
participants overestimated the frequency of evidence consistent
with the complete-choice over the proximal-choice. As in Exper-
iment 2, the measure of overestimation that we used was “bias,”
the difference between the estimated difference and the true dif-
ference in the number of observations favoring the complete-
choice over the proximal-choice.

Most critically, Experiment 3 revealed a significant interaction
between choosing-complete and task-order, 1(162) = 2.961, 3 =
17.090, p < .01, although the effect of task-order itself was only
marginally significant, #(162) = —1.929, B = —9.089, p < .06.

¢ As in Experiment 2, we analyzed explanation choices using logistic
regression with log-support-ratio as a predictor for the proportion of
participants selecting the complete-choice explanation. However, we
additionally included task-order (explain-first vs. estimate-first) as a
predictor, as well as an interaction term between log-support-ratio and
task-order. This analysis revealed a significant intercept, #(165) =
3.413, B = 0.819, p < 0.001, as well as a significant coefficient for
log-support-ratio, t(165) = 2.815, B = 0.536, p < 0.005. This suggests
that participants chose the complete-choice more often than expected on
the basis of probability matching, but were additionally sensitive to
log-support-ratio, with a larger proportion of participants selecting the
complete-choice when it was more likely to be true. These findings
replicate those from the diamond-structure condition in Experiment 2.
We did not find significant effects of rask-order, 1(165) = —0.543,
B = —0.183, p > 0.50, suggesting that this manipulation did not have
a large impact on explanation choices.
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The remaining effects’ of the regression largely replicated those of
Experiment 2, and average error across all event types was not
influenced by task order.®

To better understand the interaction between choosing-complete
and task-order, we performed separate analyses for each support
ratio condition. For the 1:3 condition, in which the frequency
evidence supported the complete-choice over the proximal-choice,
we found a significant intercept, #(53) = —3.091, = —16.667,
p < .01, a significant effect of choosing-complete, t(53) = 2.691,
B = 16.225, p < .01, and no significant effect of rask-order
(explain-first), (53) = —0.420, B = —3.583, p > .6. Participants
had an overall bias for the complete-choice, and had a larger bias
if they in fact chose the complete-choice. However, there was no
interaction between choosing-complete and task-order (explain-
first), 1(53) = —0.245, B = —2.295, p > .8, suggesting that in the
1:3 case, where the evidence was sufficient to justify the complete-
choice, the bias that emerged was not a consequence of committing
to the complete-choice in the explanation task.

In the remaining two support ratio conditions, 1:1 and 3:1, the
evidence did not favor the complete-choice, and we would there-
fore anticipate a greater role for explicit explanation choices on
frequency estimation, as found in Experiment 2. Consistent with
this prediction, in both the 1:1 and 3:1 conditions we found
significant intercepts, #(51) = —3.670, § = —21.778, p < .001,
and #(52) = 12.110, B = 35.500, p < 10~ %, and significant
interaction effects between choosing-complete and task-order
(explain-first), (51) = 2.706, B = 26.836, p < .01, and #(52) =
2.284, B = 12.536, p < .05. In these support ratio conditions,
participants exhibited a larger estimation bias if they completed the
explanation choice task prior to the frequency estimation task and
chose the complete-choice.

These analyses also revealed that in the 1:1 condition, there was
a marginal main effect of choosing-complete, t(51) = 1.972, B =
14.333, p < .1. There was no main effect of rask-order (explain-
first), t(51) = —0.517, B = —3.992, p > .5, on bias. In the 3:1
condition, there was a marginal main effect of task-order (explain-
first), 1(52) = —1.729, 3 = —7.167, p < .1: when the explanation
choice task was first, there may have been lower bias among
participants who chose the proximal-choice than that for those who
chose complete (see Figure 6). There was no main effect of
choosing-complete (p > .9).

Discussion

Experiment 3 replicated key findings from Experiment 2: par-
ticipants were significantly more likely to choose the complete-
choice in diamond-structure than predicted on the basis of the
support ratios and probability matching, with explanation choices
modulated by the actual support ratios. This is consistent with the

Table 4
Distribution of Explanation Justifications for Experiment 3

Justification type Overall Explain-first Estimate-first
Simplicity 4.8% 4.2% 5.4%
Probability 43.6% 49.0% 38.0%
Other 41.0% 32.3% 50.0%
Misunderstood 10.6% 14.6% 6.5%
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Figure 7. Graph of average bias-for-complete values by support ratio,
split by task-order and Explanation Choice.

idea that root simplicity and frequency information jointly inform
explanation choices.

Experiment 3 also went beyond Experiment 2 in considering the
causal relationship between choosing an explanation and memory.
Participants who provided an explanation before estimating fre-
quencies, who chose the complete-choice explanation, and who
were in a support ratio condition that did not favor the complete-
choice were most likely to exhibit a large bias for the complete-
choice (over the proximal-choice) in their frequency estimates.
Notably, these effects were additive: participants were most biased
when all three factors co-occurred. These findings not only provide
converging evidence of a powerful human preference for root
simplicity, but support the idea that its effects extend to judgments
beyond the explicit evaluation of explanations.

7 In Experiment 3, the interaction term between task-order and log-support-
ratio was not a significant predictor, and was thus removed from the analysis,
#(161) = —1.112, B = —3.444, p > 2. In the resulting analysis, the intercept was
not significant, #(162) = —0.588, B = —2.036, p > .5, suggesting that overall bias
did not differ from zero. However, choosing-complete, 1(162) = 2.892, B =
12.028, p < .01, and log-support-ratio, (162) = —9.663, B = —28.062, p <
107, were significant predictors of bias: participants had a greater bias for the
complete-choice in their reported frequencies if they chose the complete-choice as
the better explanation or if they were in a support ratio condition that favored the
proximal-choice. These findings mirror those from Experiment 2, though here we
additionally found an interaction between the effects of choosing-complete and
log-support-ratio, (162) = 3.209, B = 11.011, p < .005, with the greatest bias
favoring the complete-choice-consistent cases among participants who selected the
complete-choice when it was unlikely to be true.

8We used a generalized linear model with task-order, choosing-
complete, and log-support-ratio as predictors for participants’ average
absolute error rates across all eight event types. This analysis revealed a
significant intercept, #(164) = 20.317, = 95.181, p < 10, indicating
that error was significantly greater than zero, and a significant coefficient
for log-support-ratio, t(164) = —4.380, B = —11.430, p < 10~ *, indicat-
ing that error was greater for conditions that favored the proximal-choice.
Neither task-order, 1(164) = —0.471, B = —2.164, p > .5, nor choosing-
complete, 1(164) = —1.189, B = —5.936, p > 0.2, were significant
predictors of absolute error.



n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

ROOT SIMPLICITY

Experiment 4

Why might people favor simpler explanations, especially when
doing so appears to have negative consequences for the fidelity of
memory (Experiment 3)? Experiment 4 explores one hypothesis
about why explanations with few root causes, in particular, might
be preferred. We propose that, in general, explanations with fewer
root causes provide a useful way to compress information about a
causal system for the purposes of memory storage, diagnosis,
communication, and intervention. This proposal is related to ex-
planation for export (Lombrozo & Carey, 2006), a hypothesis that
suggests explanations are tailored to support predictions and in-
terventions, and so explanations should privilege exportable causal
information—that is, information that can be exported from the
current situation to support prediction and intervention in novel
scenarios (see also Lombrozo, 2006). Root causes are prima facie
good candidates for exportable causes: they can be used to predict
downstream effects, and they make good candidates for interven-
tions intended to have wide-reaching effects (for information-
theoretic analyses of interventional loci, see causal information
flow in Ay & Polani, 2008; in the context of explanation choice,
see Pacer, Williams, Lombrozo, & Griffiths, 2013).

If root simplicity is instrumentally valuable—via its relation to
effective prediction and intervention—then a preference for root
simplicity should be moderated by the degree to which a “root”
cause predicts and controls its effects. Specifically, the preference
for root simplicity should vary as a function of causal strength,
with a stronger preference as the strength of a root cause increases
(for more about causal strength see also, Lu, Yuille, Liljeholm,
Cheng, & Holyoak, 2008). We test this prediction in Experiment 4.

Method

Participants. Two-hundred-and-five participants were re-
cruited via Amazon Mechanical Turk as in Experiments 1-3. Of
these, 57.1% passed the reading checks, leaving 117 participants
for analysis.

Because one of the primary intents of Experiment 4 is to
demonstrate a weakening of the effect of root simplicity due to
nonstructural factors that were not manipulated in previous exper-
iments, Experiments 1-3 do not provide ideal bases for a power
analysis. The closest comparison is the sample size needed to
achieve B = 0.8 and o = .05 in the 2:1 diamond condition of
Experiment 2 (which had an observed proportion of 0.6897 choos-
ing Complete compared with an expected proportion of .3333),
which yields a sample size of at least 17 participants. This suggests
that our sample size of 39 participants per condition in Experiment
3 provides sufficient power to replicate the effect.

Materials and procedures. The materials and procedure were
very similar to the 2:1 diamond-structure condition from Experi-
ment 2, and the support ratio was held constant across conditions
in Experiment 4. However, the frequency data were varied across
three conditions that corresponded to different levels of causal
strength between H and M & T: weak, moderate, and strong.

There are several different metrics for causal strength, all of
which try to capture the intuition that some causal relationships are
stronger than others. Common metrics include AP (Cheng &
Novick, 1990) and causal power (“Power-PC”; Cheng, 1997),
which once modified to apply to our case scenarios, could be
defined as:
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AP = P(M, T\D, H)— P(M, T|D, —H).

AP
1—PM, TID, —H)’

Power =

for positive values of AP, and for negative values, Power-PC is
calculated as:

____Ap
P(M, TID, —H)'

Across strength conditions, participants received data consistent
with a weak causal relationship (AP ~ .02 and Power-PC ~ .03), a
moderate causal relationship (AP = .28 and Power-PC ~ .45), or a
strong causal relationship (AP ~ .59 and Power-PC ~ .91). The final
case was identical to the 2:1 diamond-structure condition from Ex-
periment 2 (see Table 5 for exact frequency counts).

Reading checks. Experiment 4 involved the same reading
checks as Experiment 2.

Power =

Results

Explanation choices. We conducted analyses similar to those
in Experiment 2 (see Figure 8). However, because the support
ratio was held constant while causal strength varied, we used the
latter as a predictor for explanation choices. Participants were
more likely to choose the complete-choice as causal strength
increased, whether causal strength was measured using AP,
t(115) = 2.900, B = 2.668, p < .005, or Power-PC, #(115) =
2.895, B = 1.709, p < .005.° The intercepts were not significantly
different from 0, suggesting that there was not a baseline prefer-
ence for one explanation over another across all conditions in this
experiment (ps > 0.9). However, even when the causal strength
was weak, participants selected the complete-choice explanation
more often than the frequency predicted by probability matching
(n = 0.525, N = 40, z = 2.5715, p < .05).

Explanation choice justifications. Justifications were coded
as in Experiments 1-3, with substantial agreement between the
three raters (k = 0.7484, z = 24.538, p < 10~ %). Overall, justi-
fications invoked simplicity in 1.6% of cases, probability in
52.8%, and other justifications in 40.7%. The remaining 4.9% of
participants who passed other reading checks provided explana-
tions that were designated as misunderstood, and were therefore
excluded from other analyses. There were two people who justified

? We reanalyzed Experiment 2 using causal strength as a predictor and
found largely the same effects. For both AP and power-PC, causal strength,
condition and the intercept were significant (df = 288, ps < 0.01). It is
worth noting that previous experiments did not manipulate log-support-
ratio independently of causal strength; indeed, in all conditions of Exper-
iments 2 and 3, causal strength and log-support-ratio were highly corre-
lated. This results directly from the constraints that we imposed in
generating the frequency distributions to represent the different log-
support-ratios, namely: having a constant total frequency, a single event in
which the root cause occurred and did not in turn cause the proximal
disease(s), and (in the diamond structure conditions) holding the condi-
tional probabilities of the diseases to be approximately independent given
that the root cause was not present (—H) so as not to suggest alternative
latent common-cause mechanisms for bringing about the proximal dis-
eases. In light of the systematic correspondences and deviations from the
predictions of probability matching (derived from the log support ratios),
we think it is unlikely that causal strength alone explains our results in
Experiments 2-3.
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Table 5
Frequency Conditions for Experiment 4
Frequency
Event type Strong Moderate Weak

—H, =M, =T 17 13 9
—-H, M, T 36 36 36
H, =M, —T 1 9 21
H M, T 18 18 18
—-H, M, =T 24 22 18
—H, -M, T 24 22 18
H, M, =T 0 0 0
H,-M, T 0 0 0

Note. “—” indicates the absence of a disease.

their explanation choice with reference to simplicity; one who
chose complete, and one who chose proximal.

Reported frequencies: Bias for complete-choice over
proximal-choice. Each individual’s bias for evidence consistent
with the complete-choice over the proximal-choice was calculated
as in Experiments 2 and 3 (see Figure 9). Bias was analyzed in a
regression with causal strength (Power-PC) and choosing-
complete as predictors. This analysis revealed a significant coef-
ficient for causal strength, t(114) = 2.844, 3 = 11.663, p < .01,
as well as for choosing-complete, t(114) = 4.454, 3 = 14.034,p <
10~*: participants overestimated the evidence for the complete-
choice to a larger degree when the causal strength was greater, and
also when they selected the complete-choice. The intercept was not
significant, #(114) = 1.656, 3 = 4.637, p > 0.1. A parallel analysis
using AP values instead of Power-PC yielded equivalent results.

Discussion

Experiment 4 varied the causal strength of the relationship
between the candidate root cause in the diamond-structure (i.e.,
Hummel’s disease) and its two potential effects (i.e., Tritchet’s and
Morad’s diseases). As predicted, we found that as causal strength
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Figure 9. Graph of average bias-for-complete values by causal strength,
split by explanation choice.

increased, so too did participants’ preference for the complete-
choice (the root-simpler explanation), even though the support
ratio remained constant at 2:1. This finding is consistent with the
idea that a preference for root simplicity derives from the goal of
efficiently representing exportable causal information, including
causes that effectively predict their effects and support maximally
effective and efficient interventions.

General Discussion

We began by considering four questions about simplicity in
explanations and its role in human cognition:

Q,: What makes an explanation simple?

Q,: How are explanations selected when the simplest expla-
nation is not the one best supported by the data?

Q4: What are the cognitive consequences of a preference for
simpler explanations? For example, does the preference bias
memory or inference?

Q,: Why do people prefer simpler explanations?

Our findings from Experiments 1 and 2 suggest an answer to Q,:
people’s explanatory preferences correspond to root simplicity
(i.e., minimizing the number of unexplained causes invoked in an
explanation), and not to node simplicity (i.e., minimizing the
number of total causes invoked in an explanation). Our findings
from Experiment 2 additionally provide a partial answer to Q,:
when participants had access to a sample from the full joint
probability distribution over diseases, explanatory preferences
were a function of both root simplicity and probability.

Experiments 2 and 3 jointly address Q5, with findings that
suggest an influence of explanation on memory for previous ob-
servations. Specifically, participants who chose the simpler expla-
nation when the data did not support this choice systematically
misreported their observations: they misestimated the rates at
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which disease combinations occurred in a way that made their
explanation choice more likely than it truly was. But they only did
this when their chosen explanation was the root-simpler option and
was not already supported by the data. Experiment 3 went beyond
Experiment 2 and demonstrated that choosing a root-simpler ex-
planation (when it was not independently supported by the data)
was a causal factor in subsequent memory distortions.

Finally, Experiment 4 explored Q,, and found that people’s
explanatory preferences are more responsive to root simplicity
when the root causes are strong. We suggested that people’s
preference for root-simpler explanations derives from the role
explanation plays in generating efficient representations of export-
able causal information for prediction and control. The stronger a
root cause, the more usefully it fulfills this role. Strong root causes
can be used to infer their downstream effects with greater cer-
tainty, and strong root causes allow larger or more certain effects
from a single intervention. Additionally, we found that people’s
estimation biases were modulated by the strength of the causal
relationship, consistent with the idea that these errors are driven by
a preference for root simplicity.

Together, our findings present a unified (if complicated) picture
of simplicity and its role in human judgment. We find that root
simplicity informs explanatory judgments, is systematically com-
bined with probabilistic information, can alter memory for previ-
ous observations, and is especially influential in cases involving
strong causal relationships. It is interesting to note, however, this
consistent role for root simplicity in judgments was not reflected in
explicit justifications: participants very rarely invoked simplicity
or complexity by name, and the small number of such appeals were
not restricted to justifications for explanations that were simpler in
terms of root simplicity. This suggests that even though root
simplicity influences people’s judgments, it may not be what
people mean when they explicitly justify an explanation with
reference to simplicity.

Relationship to Prior Work

While our findings provide initial answers to Q,_,, they also
raise important questions, including their relationship to prior
work. For example, we find that simplicity and frequency infor-
mation jointly influence explanation choices, but how are these
two factors combined? Lombrozo (2007) argued that simplicity
plays a role in determining the prior probability of a hypothesis,
but that frequency information influences how the probability
assigned to a hypothesis is updated, with a final decision resulting
from probability matching to the resulting posterior distribution.
The data from Lombrozo (2007) suggested a prior for simpler
explanations ranging from 68% (2007: Experiment 3) to 79%
(2007: Experiment 2), and here we find similar results, with priors
that range from 68.9% (Experiment 2) to 69.4% (Experiment 3).
However, in some cases, we found that participants underweighted
probability in their final decision (assuming that they were prob-
ability matching), potentially because of the format in which the
probabilistic information was presented—in Lombrozo (2007), it
was also the case that frequency information was weighted less
heavily when presented in a series of individual cases as opposed
to numerical summary values. It could be that data presented
sequentially is treated as involving greater uncertainty than numer-
ical summary values.
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A second question concerns the way in which explanation
affects other judgments, such as probability or frequency estima-
tion. Previous work, reviewed in Koehler (1991), has found that
prompting people to explain why something could be the case
(e.g., a particular team winning a sports tournament) increases the
subjective probability that it is (or will be) the case. Our findings
from Experiments 2—4 differ in a number of ways. Most notably,
we found the largest explanation-induced changes in frequency
estimation when the explanation selected was root-simpler and
when the data themselves did not favor that explanation. In our
experiments, explaining itself was not sufficient to strongly alter
estimates.

One explanation for the selectivity of our effect is that estima-
tion biases occur as participants try to reconcile two discrepant
sources of evidence for the state of the world: their memory for
different kinds of observations and their explanatory commitment.
Because these are only likely to conflict when an explanatory
preference—such as simplicity—draws people to commit to ex-
planations that mismatch their observations, estimation biases are
most likely to arise for participants who choose simple explana-
tions when they’re unlikely to be true. Future work could inves-
tigate these ideas more directly, with an eye toward isolating the
effects of explanation in general from those that arise from specific
explanatory preferences.

Our findings are potentially surprising in light of prior research
on the causal status effect (e.g., Ahn, 1998; Ahn & Kim, 2000;
Ahn, Lassaline, & Dennis, 2000; Murphy & Allopenna, 1994),
which finds that people tend to favor causes that are earlier in a
causal chain when making decisions about category membership.
This might suggest that participants would favor explanations that
appeal to “deeper” causes, leading them to favor the complete
explanation in our chain-structure—that is, an explanation of the
form A—B—C as opposed to B—C. In contrast, we found no
preference for A—B—C over

B—C, consistent with the predictions of root simplicity. This
apparent mismatch could arise for several reasons. First, the causal
status effect is observed when the presence or absence of earlier
causes is stipulated, and participants must select a classification. In
our task, participants had to infer the presence or absence of an
earlier cause in response to observed effects—it’s not obvious why
the same priority for deeper causes should arise. Second, the causal
status effect is itself quite complex, and only arises under partic-
ular conditions (e.g., Lombrozo, 2009; Rehder, 2010). In some
cases, a coherence effect is observed, whereby combinations of
features that are consistent with one’s beliefs about causal rela-
tionships in a given domain provide stronger evidence for mem-
bership in a category governed by those causal relationships.
Rehder and Kim (2010) found that the relative role of causal status
versus coherence was moderated by the strength of causal rela-
tionships, with stronger causes leading to weaker effects of causal
status, in contrast to the stronger effects of root simplicity observed
for stronger causes in Experiment 4. It could thus be that a
preference for A—B—C over B—C doesn’t arise in our task
because the nature of the inference differs from that used in causal
status classification tasks, or because the conditions under which
root simplicity is favored (namely those involving strong root
causes) are not those in which a causal status effect is likely to
arise.
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Limitations and Future Directions

Population and materials. An important limitation to our
work stems from the large proportion of participants excluded
from analyses, primarily for failing reading comprehension
checks. Including such checks is a common practice in research
involving data from large online populations (Crump, McDonnell,
& Gureckis, 2013; Oppenheimer, Meyvis, & Davidenko, 2009),
with difficult questions sometimes eliminating nearly 40% of
participants (Downs, Holbrook, Sheng, & Cranor, 2010). These
studies focus on individual exclusion criteria, not sets of criteria
used simultaneously, and thus it is hard to compare this past work
to our overall exclusion rate. However, none of our individual
criteria eliminated anywhere near 40% of participants; the greatest
percentage of participants eliminated by a single criterion was
26.5%, with most criteria excluding many fewer (see the online
supplementary materials, Part B). It is important to note that, our
criteria were all established prior to data collection and analyses,
so they did not contribute to “researcher degrees of freedom”
(Simmons, Nelson, & Simonsohn, 2011).

Participant exclusions limit the generalizability of our findings
to some extent. For instance, it could be that our results only apply
to individuals with particular characteristics (such as high working
memory), or that they only apply to individuals when they are
engaged in deliberative reasoning. In light of these concerns, we
repeated all of our analyses with a relaxed set of exclusion criteria,
retaining only those criteria that required reading and following
instructions related to the task, and where the response was solic-
ited on the same page as the instructions or other information,
thereby minimizing memory demands (see the online supplemen-
tary materials, Part D). Doing so resulted in a reduction in exclu-
sion rates of 8%—15% across experiments, and a corresponding
increase in sample sizes of 15%-36%. These analyses revealed
very similar patterns of significance to those reported here. Most
crucially: In Experiment 1, participants selected the complete-
choice significantly more often than the proximal-choice in the
diamond-structure condition; In Experiment 2, the regression anal-
ysis revealed that participants selected the complete-choice in the
diamond-structure condition significantly more often than ex-
pected on the basis of the frequency information alone; In Exper-
iment 3, regression analyses revealed a significantly greater esti-
mation bias (favoring the complete-choice over the proximal-
choice) for participants who explained prior to estimating in
conditions with frequency information that did not favor the com-
plete-choice; In Experiment 4, participants were significantly more
likely to select the complete-choice as the causal strength of the
root cause increased. All additional findings using these relaxed
exclusion criteria are reported in the online supplementary mate-
rials, Part D.

While these additional analyses attenuate concerns about the
characteristics of our sample, it remains a possibility that a variety
of state or trait variables moderate the observed effects. For in-
stance, there is evidence that people with lower levels of education
are more likely to endorse the idea that complex problems can
have simple solutions (e.g., van Prooijen, 2017), as well as evi-
dence that individuals vary in their “attributional complexity,”
which itself correlates with need for cognition (Fletcher, Danilov-
ics, Fernandez, Peterson, & Reeder, 1986). As in these cases, we
expect that our findings succeed in identifying a dimension that

PACER AND LOMBROZO

governs intuitive judgments of complexity (namely the root sim-
plicity of causal explanations), but that individual or cultural
factors could influence the relative importance of this dimension,
both in absolute terms and in relation to alternative bases for
evaluating competing explanations.

Individuating causes and explanations. Thus far, our dis-
cussions and analyses have evaluated simplicity with respect to
causes that were already individuated, and without assessing the
“complexity” of the individual causes themselves. However, both
of these assumptions deserve critical scrutiny: simplicity may
interact with the individuation of causes, and some causes may be
more “complex” than others.

These issues potentially arise in Experiment 4, where we sug-
gested that invoking a small number of “strong” root causes allows
for more efficient prediction and intervention via more efficient
representations of causal systems. If root causes are deterministic
causes of their children (which was not the case in any of our
studies), then an observation of the root cause is formally equiv-
alent to observing the cause’s children. Faced with that situation,
people may reindividuate the causes, representing the deterministic
root and its children as a single entity—perhaps as a single cause
with more complex internal structure. We expect further study
about the role of variable individuation, internal complexity, and
its relation to preferences for simpler explanations to prove fruit-
ful.

A related concern is how to individuate explanations them-
selves—for example, how to determine “how far back” in the
causal chain to go, and when doing generates a “new” explanation.
Prior work by Thagard (1989) and Read and Marcus-Newhall
(1993) suggests that explanations that are themselves explained
should be favored, and Read and Marcus-Newhall (1993, Study 2)
find this to be the case (but see Preston & Epley, 2005). In our
analysis, if a cause explains another cause, by definition it be-
comes part of the total explanation under evaluation. As a result,
although we contrast explained and unexplained causes, all of our
explanations are themselves “unexplained.” However, there is
evidence that people do not always favor or generate explanations
that include every cause in a causal system (Pacer et al., 2013), and
doing so presumably becomes increasingly cumbersome the more
complex the causal is. On the other hand, choosing a subset of
causes introduces a computational explosion in the number of
potential explanations (Shimony, 1991). Identifying the “bound-
aries” of explanations and treating some explanations as explana-
tions of other explanations may be an excellent approach to ad-
dressing this problem. Further work looking at how root simplicity
interacts with this process of “chunking” a causal system into
individually coherent explanations could prove valuable (see also
Johnson & Ahn, 2015).

Formal metrics of simplicity. Simplicity has received many
formal treatments over the years, and a full story about explanation
will assuredly have at least some formal elements. How do our
findings relate to these formal approaches, and might our method
be adapted to testing formal metrics more directly?

Several metrics consider the number of parameters included in
a model and assign models with fewer parameters a higher prob-
ability (e.g., Jeffreys, 1998; Jeffreys & Berger, 1992; Popper,
1959; Akaike, 1974; or see Baker, 2010). Our findings are difficult
to reconcile with these accounts without modification. First, such
models assume that simplicity is valuable only instrumentally, as
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a cue to probability, whereas our results are consistent with a
stronger role for simplicity, as participants continued to favor
simpler explanations even when evidence unambiguously favored
an alternative. Second, such metrics have typically been concerned
only with the number of parameters required, not the values of
those parameters, which Experiment 4 suggests can also moderate
preferences for simplicity. Although recent modifications to such
metrics have considered the values of parameters, these accounts
penalize for large coefficients, that is, stronger relationships (Fan
& Li, 2001), which is the opposite of what we found in Experiment
4, in which stronger causal relationships between the variables
resulted in including a higher count of variables.

On penalizing large parameters, strong causes, and sparsity.
Some techniques within machine learning include explicit or im-
plicit commitments to simplicity, expressed in terms of the struc-
ture of parameters, their strength, or sometimes both. For instance,
many traditional techniques that involve fitting matrices of param-
eters to data, such as Principle Components Analysis (PCA) or
Latent Semantic Analysis (LSA), implicitly rely on a penalty that
emerges from the structure or the rank of the factored predictive
matrix. These techniques penalize matrices with larger absolute
numbers of terms included in the final predictive matrix (Srebro &
Shraibman, 2005). Modern machine learning methods such as
deep learning often employ large sets of parameters without issue,
but run into issues when faced with large parameter values, which
can result in unstable algorithmic behavior. For cases like these,
penalizing the strength of the parameters can be a computational
necessity. Regularization techniques apply penalties to model
scores based on both (or either) the number and the size of
parameters. By doing so, modelers can reduce generalization error
by considering both structure and strength (in the vein of our
discussion in Experiment 4).'°

Simplicity also arises in machine learning discussions of sparse
coding and sparse representations. Sparse representations are
weight settings for which (given a particular input) only a small
number of units are expected to have nonzero activations or
contributions to the explanation of some learning example. Or,
more strongly, “In a good sparse model, there should only be a few
highly activated units for any data case” (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014). Small numbers of
large activations are arguably consistent with our findings regard-
ing root simplicity. However, there is some controversy over
whether people’s priors over causal structures in fact favor a small
number of strong causes. On the one hand, Lu et al. (2008) and
Powell, Merrick, Lu, and Holyoak (2016) argue that people’s
priors are in fact sparse (giving few causes weight at all) and
strong (giving those causes that have weights large weights). On
the other hand, empirical estimates of prior distributions support a
prior that favors strong causes, but not sparsity among causes
(Yeung & Griffiths, 2015). Importantly, though, the cases exam-
ined in Yeung and Griffiths (2015) involved relatively few causal
variables (two: a potential cause and a background cause). When
people confront a large number of candidate causes, let alone the
number of parameters that can be present in deep learning models
(often k > 10°), resource limitations could impose a constraint
favoring node-style simplicity (or some other way to reduce the
number of variables). This suggests that priors favoring sparse
representations may manifest only in cases where many variables
are at play. Indeed, when more variables exist as potential com-
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peting causes, as in Powell et al. (2016), models with priors giving
more weight to sparse parameter assignments perform better at
modeling human causal strength judgments.'' Further work is
needed to explore the relationship between the preferences against
strong links prevalent in machine learning and preferences for
strong links found in causal induction and explanation.

Kolmogorov complexity and algorithmic information
theory. Another approach that is closer in spirit to root simplic-
ity is that exemplified by Kolmogorov Complexity (Kolmogorov,
1965) in the field of algorithmic information theory (Solomonoff,
1960), according to which simplicity corresponds to the length of
code required to encode a program that generates an object in a
universal descriptor language (where the canonical example of
such a programming language would be that of a Universal Turing
Machine). Or (to put it far too simply) the easier it is to compress,
the simpler it is. This approach has been advocated most promi-
nently in psychology by Chater (together with computer scientist
Vitanyi), who has suggested that this notion of simplicity offers a
unifying principle for understanding all of cognition (Chater, 1999;
Chater & Vitdnyi, 2003).

While there are clear connections between formal notions of
compression (such as Kolmogorov Complexity) and our sugges-
tions in Experiment 4, our own proposal was concerned with
efficiently representing a particular kind of information: that which
would best support prediction and intervention, and perhaps com-
munication in causal settings. However, Kolmogorov Complexity
is an information-theoretic account devoid of causal or interven-
tional information. If we are correct in suggesting that causal
information of this sort is relevant for explanation (see also, Pacer
et al., 2013), then alternatives to Kolmogorov Complexity that
represent causal information (such as causal information flow, see
Ay & Polani, 2008) may need to be developed to fully describe
these relationships. Exploring the connections between Kolmogo-
rov Complexity and this causally defined notion of information is
a promising direction for future work.

Beyond simplicity: Other explanatory virtues. Many other
explanatory virtues can (and should) be explored to develop a full
picture of human explanatory judgments. These include concerns
about unification and explanatory scope (Khemlani, Sussman, &
Oppenheimer, 2011; Kitcher, 1989), explanatory power (Sch-
upbach, 2011; Schupbach & Sprenger, 2011), subsumption (Wil-
liams & Lombrozo, 2010, 2013; Williams, Lombrozo, & Rehder,
2013), interactions between different “levels” of explanation and
general concerns about granularity (Anderson, 1990; Marr, 1982;
Rottman & Keil, 2011), and several others. Many of these explan-
atory features have not been analyzed in the context of a compu-
tational theory of explanation, but we suggest that the paradigms

19 Another modern technique used in deep learning is called “dropout”
and involves excluding a randomly selected set of parameters from the
model on different training examples. This technique does not concern
itself with the simplicity of the final model per se, but rather the “class” of
models that are effectively being trained via this sampling procedure. In
practice, dropout does seem to result in models that are “simpler” in both
strength and structure: it acts as a strength-based regularizer (Wager,
Wang, & Liang, 2013; Erhan et al., 2010) and also encourages sparse
representations (Srivastava et al., 2014).

' In Powell et al. (2016) priors with only a preference for strong causes
failed to account for the competition between candidate causes.
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developed here will adapt well to broader exploration, including to
cases of noncausal explanation.

Is root simplicity a kind of simplicity? Recognizing the mul-
tiplicity of explanatory virtues raises a question about whether the
virtue we have identified is best characterized as simplicity, espe-
cially in light of the small proportion of participants who explicitly
identified simplicity as a basis for their choice of the root-simpler
explanation. Could it be that root simplicity in fact reflects some
other virtue, or a combination of other virtues? To some extent this
question is empirical, but to a large extent it is a question of
nomenclature for the scientific community to resolve. In our view,
the similarities between root simplicity and other notions of sim-
plicity that have arisen in philosophy, science, and computer
science are more striking than the divergences. These other notions
differ not only from the everyday usage of the term “simplicity,”
but also from each other. In naming the virtue that we identify root
simplicity, we contribute to the conversation around an evolving
term of art within psychological theory; a term which may ulti-
mately diverge from folk usage. Such divergence is not unusual:
psychology is a technical science, and this is reflected in diver-
gences between how terms are used in psychological theorizing
and in everyday speech, such as “prototypicality,” “depression,” or
“memory.”

Balancing conflicting virtues. Recognizing the plurality of
explanatory virtues also raises questions about how decisions are
made when different virtues conflict. For instance, the simplest
explanation may not be the broadest or most fruitful. It should be
possible to construct cases in which people favor a root complex
explanation over a root simple one. Our account predicts that this
should occur when other explanatory virtues favor the root com-
plex explanation, thereby “outweighing” the influence of root
simplicity. However, it is unclear how people combine the influ-
ences of diverse, potentially conflicting virtues into singular judg-
ments.

One proposal, developed by Thagard (1989, 2004), is that the
best explanation is chosen after a process of constraint satisfaction
involving multiple virtues. This is a valuable approach that ad-
dresses the challenge of balancing virtues through its implemen-
tation in a neural-network-like architecture for described depen-
dencies between propositions. Thagard’s theory is explicitly posed
in nonprobabilistic terms. Thagard writes that his account of co-
herence “contrasts markedly with probabilistic accounts” (Thag-
ard, 1989), and emphasizes the categorical nature of judgments:
propositions are either accepted or not accepted, not assigned an
intermediate value that can be interpreted as a subjective proba-
bility (Thagard, 2004).

In contrast, our own approach is grounded in probabilistic
theories of causal learning and explanation. We show that people
are able to learn about causal relationships from frequency data,
and that frequency data affects their explanations. Moreover, we
show (in Experiment 4) that these probabilistic relations can alter
their reliance on root simplicity. A constraint satisfaction approach
to resolving conflicting virtues could potentially accommodate
these results, but to do so it would need to be expanded to reason
about probabilistic relations, and to define explanatory virtues in a
commensurate representational framework. Developing such a
framework is a valuable goal for future research, but we expect
that doing so will be more viable once additional virtues have been
empirically vetted (through the kind of experimentation we report
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here for the virtue of simplicity). With identified virtues in hand,
it will be valuable to revisit the question of how they trade off in
complex, real-world cases.

Conclusion

By using methods drawn from philosophical, psychological, and
statistical toolboxes, we suggest that

1. root simplicity is a better predictor of human behavior
than node simplicity;

2. simplicity trades-off with probability in choosing expla-
nations;

3. choosing simple explanations can alter memory;

4. and the value of root simplicity increases with causal
strength.

We unify our findings with a theory of explanation as a process
with very specific aims: to inform information-rich representations
of causal systems, exportable to other situations in which these
representations improve prediction and intervention.
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