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Abstract

Occam’s razor—the idea that all else being equal, we should pick the simpler hypothesis—
plays a prominent role in ordinary and scientific inference. But why are simpler hypotheses better?

One attractive hypothesis known as Bayesian Occam’s razor (BOR) is that more complex

hypotheses tend to be more flexible—they can accommodate a wider range of possible data—and

that flexibility is automatically penalized by Bayesian inference. In two experiments, we provide

evidence that people’s intuitive probabilistic and explanatory judgments follow the prescriptions

of BOR. In particular, people’s judgments are consistent with the two most distinctive characteris-

tics of BOR: They penalize hypotheses as a function not only of their numbers of free parameters

but also as a function of the size of the parameter space, and they penalize those hypotheses even

when their parameters can be “tuned” to fit the data better than comparatively simpler hypotheses.
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1. Introduction

Occam’s razor—the idea that all else being equal, we should pick the simpler hypothe-

sis—plays a prominent role in ordinary and scientific inference (Baker, 2013; Lombrozo,

2016; Sober, 2015). But why are simpler hypotheses better? One attractive answer is the

Bayesian Occam’s razor (BOR), according to which Bayesian inference automatically

penalizes hypotheses that are more complex in the sense that they contain more free

parameters and/or free parameters with more possible values (Henderson, Goodman,

Tenenbaum, & Woodward, 2010; Jefferys & Berger, 1992; MacKay, 2003; Rosenkrantz,

1977; see Sober, 2015, for critical discussion). Here, we examine whether people’s
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intuitive judgments correspond to BOR in favoring less flexible hypotheses, whether mak-

ing estimates of probability or evaluating the quality of explanations.

According to Bayes’ theorem, the relative credibility of two hypotheses H1 and H2 in

light of data D, PðH1=DÞ
PðH2=DÞ, equals

PðH1ÞPðD=H1Þ
P H2ð ÞPðD=H2Þ

The first ratio in this expression measures the extent to which H1 is initially more plausi-

ble than H2, while the second—the likelihood ratio of H1 and H2—measures how well

H1 predicts D compared to H2. The idea behind the BOR is that by its very nature a

hypothesis that is more complex (in the sense that it contains more free parameters or

more possible parameter values) tends to predict the actual data less well than a simpler

hypothesis. The reason is that a complex hypothesis is more flexible: By adjusting or

“tuning” the parameters in the right way, the hypothesis can be made to accommodate a

wide range of possible data. The flipside, however, is that for many parameter settings,

the hypothesis fits the actual data very poorly, so that, assuming a relatively uniform

probability distribution over the parameter space, overall the probability of the data under

the hypothesis will be relatively low. Hence, as long as H1 fits the data relatively well,

P(D/H2) will be lower than P(D/H1), so that unless H2 is initially much more plausible

than H1, Bayesian inference will tend to favor H1 over H2.

To illustrate, suppose that a coin is tossed 10 times and comes up heads 4 times.

One hypothesis is that the coin is fair (H1), which gives a probability of .21 to the

data. Another, more flexible hypothesis H2 says that the probability of heads is n/10,
where n is equally likely to be any natural number between 1 and 8. Here, the proba-

bility of heads is a free parameter, that is, a parameter that can take a variety of pos-

sible settings. This parameter can be “adjusted” to fit a variety of possible sequences,

and in fact can be adjusted to fit the actual sequence better than H1: stipulating n = 4

yields a probability of .25 for the observed sequence. But other possible settings of

the parameter yield a poor fit with the observed sequence. Since the probability distri-

bution over the space of possible settings of the free parameter is uniform (i.e., each

parameter setting is equally likely), overall H2 fits the actual data more poorly than

H1. Specifically, H2 assigns a probability of only .11 to the observed sequence.1 If

the two hypotheses are a priori equally likely, the evidence favors the less flexible

hypothesis H1.

Note that the BOR is sensitive not only to the number of free parameters in a hypothe-

sis, but also to the size of the parameter space, that is, the number of possible values that

a parameter may take. Thus, a third hypothesis H3, where n is allowed to be any natural

number between 1 and 10, yields an even poorer fit with the data, as the additional values

of the free parameter assign a particularly low probability to the actual sequence of

tosses. This is one of the main differences between the BOR and other criteria for

hypothesis selection such as AIC (Akaike, 1974; Forster & Sober, 1994) and BIC
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(Schwarz, 1978), which penalize hypotheses solely as a function of the number of free

parameters they contain, without an additional penalty for the number of values that those

parameters can assume.

Philosophers of science have shown that the considerations related to the BOR plausi-

bly explain various aspects of scientific inference (Henderson et al., 2010), including

major historical episodes of scientific theory change such as the dispute between Ptole-

maism and Copernicanism (Henderson, 2014; Myrvold, 2003). Moreover, there is consid-

erable psychological evidence that people engage in Bayesian inference (see Griffiths,

Tenenbaum, & Kemp, 2012 for an overview), although the most interesting conditions

for testing the BOR—cases in which parameterized hypotheses vary in flexibility—have

not been investigated. There is also evidence that people’s inferences are guided by con-

siderations of simplicity (Bonawitz & Lombrozo, 2012; Lombrozo, 2007, 2016; Pacer &

Lombrozo, in press; Read & Marcus-Newhall, 1993), but this work has evaluated a dif-

ferent measure of simplicity (the number of assumptions or unexplained causes invoked

in an explanation), and evidence that people respond to this measure has taken the form

of departures from probabilistic inference.

We report the results of two experiments investigating whether people penalize

more flexible hypotheses in accordance with the BOR. Our experiments assess hypoth-

esis evaluation across two kinds of judgments: probability and explanation. We assess

the former by having participants indicate which of two hypotheses they think is more

“likely” in light of some observations. We assess the latter by having participants

indicate which of two hypotheses they think is a “better explanation” for those obser-

vations. We deliberately did not provide further guidance on what constitutes a better

explanation. This allowed us to avoid commitment to a specific theory of explanation,

such as the causal or unification account (for reviews, see Lombrozo, 2011, 2012;

Woodward, 2017).

Our study included both probabilistic and explanatory judgments because the two have

been shown to diverge in the context of hypothesis choice (Douven & Schupbach, 2015).

In particular, it could be that explanatory judgments are more sensitive to likelihoods than

to priors (Douven & Schupbach, 2015; Pacer, Williams, Chen, Lombrozo, & Griffiths,

2013), resulting in a greater penalty for flexible hypotheses when the hypotheses are eval-

uated as explanations for a set of observations.

2. Experiment 1

The main goal of Experiment 1 was to examine whether people’s probabilistic and

explanatory judgments conform to the BOR in penalizing more flexible hypotheses. To

do so, we asked participants which of two hypotheses, H1 and H2, was more credible in

light of the presented data. We assigned participants to one of three conditions: the

degree of flexibility of H1 was kept constant, but the number of parameters included in

H2 and the size of the relevant parameter space varied across the three conditions.
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2.1. Method

2.1.1. Participants
A total of 178 participants (46% women, mean age 34, range 18–72) were recruited

online on Amazon Mechanical Turk and paid $0.50 for their participation. An additional

68 participants were excluded for failing a comprehension check. In all experiments, par-

ticipation was restricted to users with an IP address within the United States and an

approval rating of at least 95% based on at least 50 previous tasks.

2.1.2. Materials, design, and procedure
Participants were placed in the role of a scientist on a fictional planet studying two

“almost indistinguishable” and “equally common” frog-like species, the “velmos” and the

“zorgits,” both of which commonly have red spots on their backs. Participants read

information about the frequency of red spots for each species.

For velmos, the information presented to participants was always the same:

Around 50% of [velmos] have no red spots, 25% of them have one red spot, and 25%

have two red spots. Thus if you observe 100 velmos, a representative sample would

include 50 with no red spots, 25 with one red spot, and 25 with two red spots. In addi-

tion, velmos inherit their number of red spots from their mother. So if a female velmo

has no spots, her offspring will have no spots; if she has one spot, her offspring will

have one spot; and if she has two spots, her offspring will have two spots.

For zorgits, on the other hand, the information varied across conditions: the No Param-

eter condition, the Medium Parameter condition, and the Large Parameter condition

(“No,” “Medium,” and “Large” for short). In the No condition, participants were told that

zorgits “always have two red spots on their back.” In the Medium condition, participants

read the following:

Zorgits can have anywhere between 1 and 4 red spots on their back, and each of these

possibilities is equally likely. Thus if you observe 100 zorgits, a representative sample

would have 25 with one red spot, 25 with two red spots, 25 with three red spots, and

25 with four red spots.

In the Large condition, participants were told that zorgits can have anywhere between

1 and 100 spots on their back, so that:

if you observe 1000 zorgits, a representative sample would have 10 of them with one

red spot, 10 of them with two red spots, 10 of them with three red spots, and so on up

to 100 red spots.

In the Medium and Large conditions, participants also read that zorgits inherit the

number of red spots on their back from their mother.
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Participants were then told that their research assistants just discovered a small family

of frog-like animals consisting of a female and two of its babies, each with two red spots.

After reading this information, participants were asked to choose between two competing

hypotheses: that the family is a family of velmos (H1), or that it is a family of zorgits

(H2). They evaluated both which was more likely and which was a better explanation (in

counterbalanced order), using a forced choice followed by a 3-point scale (see Table 1).

This allowed us to measure participants’ estimates of the comparative probability/ex-

planatoriness of H1 and H2 on a 6-point scale, from 1 (H1 judged much more likely or

explanatory than H2) to 6 (H2 judged much more likely or explanatory than H1). We call

these comparative strength ratings.

The descriptions across the three conditions were designed to vary the presence of a

free parameter in hypothesis H2 (No vs. Medium and Large) as well as the number of

values the parameter could take on (Medium vs. Large). Specifically, whereas the number

of spots on the zorgit mother’s back is fixed in No, this parameter becomes free in Med-

ium and Large, in the sense that it can take various different values yielding different

probabilities for the data. And the number of possible values of this parameter increases

from 4 in Medium to 100 in Large. (In both conditions, the probability distribution over

the parameter space is uniform.) In contrast, the number of free parameters in H1 (and

the size of the associated parameter space) remains constant over the three conditions.

Specifically, in all conditions, H1 has one free parameter—the number of spots on the

velmo mother’s back—with possible values 0, 1, and 2 (whose respective probabilities

are ½, ¼, and ¼).
As H2 becomes more flexible across the three conditions (either by having more free

parameters or by having parameters with more possible values), it becomes increasingly

penalized by the BOR. In contrast, H1’s flexibility (and hence its likelihood) remains con-

stant. As a result, the likelihood ratio LR(H1, H2) increases across conditions, and since

the prior probabilities of H1 and H2 are the same (zorgits and velmos are equally com-

mon), the posterior ratio of the two hypotheses is the same as their likelihood ratio (see

Table 2).2

Table 1

Questions in Experiment 1, as a function of judgment (probability vs. explanation)

Probability Explanation

Q1a Given that all three members of the family have

two spots on their back, which of the following

do you think is more likely?

(A) This is a family of zorgits.

(B) This is a family of velmos.

In your opinion, which of the following is a better

explanation for the fact that all three members of

this family have two red spots on their back?

(A) This is a family of zorgits.

(B) This is a family of velmos.

Q2 How much more likely do you think the option

you chose is than the alternative?

(A) Slightly more likely

(B) Moderately more likely

(C) Much more likely

How much better do you think the explanation

you chose is than the alternative?

(A) Slightly better

(B) Moderately better

(C) Much better

Note. aAnswers for Question 1 were presented in random order.
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Thus, if people are sensitive to the flexibility of a hypothesis when assessing hypothe-

sis strength, we should expect H2’s comparative strength to decrease across parameter

conditions. In particular, participants should ascribe less comparative strength to H2 in

Medium than in No, given the introduction of a free parameter, and in Large than in

Medium, given the additional values that the free parameter may assume.

At the end of the task, participants were asked why they chose the hypothesis they

did, and given the option to type a few sentences in a text box. We call this the justifica-
tion of their hypothesis choice.

2.2. Results and discussion

2.2.1. Comparative strength
A 3 parameter (no, medium, large) 9 2 judgment (explanation, probability) ANOVA on

comparative strength ratings revealed a significant main effect of parameter,

F(2, 178) = 48.90, p < .001, gp
2 = .363 (see Fig. 1). Post hoc independent samples t-tests

revealed that the comparative strength of H1 versus H2 increased significantly across

parameter conditions. Strength judgments favored H1 significantly more in Large

(M = 2.55) than in Medium (M = 3.95), t(113)=�6.33, p < .001, or No (M = 4.62),

Table 2

Likelihood and likelihood ratio of H1 and H2 as a function of parameter condition in Experiment 1

No Medium Large

H1 H2 H1 H2 H1 H2

Likelihood 0.25 1 0.25 0.25 0.25 0.01

LR (H1, H2) 0.25 1 25

Fig. 1. The effect of parameter condition on judgments of comparative probabilistic and explanatory strength

in Experiment 1.
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t(121)=�9.47, p < .001. Judgments also favored H1 significantly more in Medium than in

No, t(116) = �3.17, p = .002. There was no significant main effect of judgment

(p = .677), nor a significant interaction (p = .485). This suggests that flexibility has an

effect on both probabilistic and explanatory judgments, and that this effect is not moder-

ated by the nature of the judgment.

2.2.2. Justification
Two coders classified participants’ justifications into one or more of five coding cate-

gories (see Table 3). Disagreements between coders were resolved through discussion

(average Cohen’s j = .64, p < .001 for each category). Excluding the minority of partici-

pants who misunderstood the task from analysis does not change the conclusions

presented above.

It is noteworthy that while most comments made reference to probability, only a small

number of comments (N = 11) explicitly appealed to considerations related to flexibility.

Overall, the results of Experiment 1 provide evidence that participants are sensitive to

the form of simplicity envisioned by the BOR and tend to penalize flexibility when

assessing both the probability and explanatory strength of a hypothesis, including when

the increase in flexibility is due to an increase in parameter space size rather than number

of parameters.

3. Experiment 2

Our goals in Experiment 2 were to address two possibilities left open by Experiment

1. First, for the scenario in Experiment 1, the respective likelihoods (and posterior proba-

bilities) of the two hypotheses were relatively easy to compute. Thus, Experiment 1 left

open the possibility that people are only sensitive to Bayesian considerations of flexibility

when they can effectively “do the math,” and not when they must rely on more intuitive

Table 3

Coding categories used to classify justifications for hypothesis choices in Experiments 1 and 2, along with

the proportion of participants who produced each justification type

Coding

Category Criterion

Proportion

(Exp. 1)

Proportion

(Exp. 2)

Probability Made reference to the probability of a hypothesis (either

likelihood or posterior)

.61 .48

Flexibility Referred to features of the stimuli related to flexibility .06 .11

Precise Mentioned precise numbers .31 .04

Other Offered some justification for hypothesis choice other than

flexibility or probability

.28 .37

Misunderstood Response suggested participant misunderstood at least one

aspect of scenario

.08 .05

Note. Proportions do not sum to 1, as a single justification could fall into more than one category.
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assessments. Second, Experiment 1 did not test one particularly important consequence of

the BOR, namely that a hypothesis can be penalized for flexibility even when the param-

eters of the hypothesis can be “tuned” to fit the data better than a comparatively less flex-

ible hypothesis (recall the coin-flipping example from the introduction). Thus, the results

of Experiment 1 were consistent with an alternative hypothesis on which probabilistic

and explanatory judgments are sensitive to the likelihood of the hypothesis on the param-

eter setting that best fits the data, and only penalize more flexible hypotheses when the

relevant likelihoods are equal, in contradiction with the BOR’s verdicts. The goal of

Experiment 2 was to address these two possibilities.

3.1. Method

3.1.1. Participants
One hundred and eighty participants (44% women, mean age 34, range 19–83) were

recruited online on Amazon Mechanical Turk and paid $0.50 for their participation. An

additional 91 participants were excluded for failing a comprehension check.

3.1.2. Materials, design, and procedure
The design and procedure of Experiment 2 were the same as those of Experiment 1,

but the scenario differed. Participants read a story involving a family (the Millers) who

every year prepare candy bowls for trick-or-treaters on Halloween. Participants were told

that every year, Mr. and Mrs. Miller each fill a pumpkin with bags of Skittles and

M&Ms. In all conditions, participants were told that “Mrs. Miller thinks that M&Ms are

a bit tastier than Skittles, so she always fills her pumpkin with 160 bags of M&Ms and

140 bags of Skittles.” By contrast, the information provided about Mr. Miller varied

across the three parameter conditions. In the No condition, participants read:

because he is more frugal than Mrs. Miller, Mr. Miller only places 200 bags of candies

in his pumpkin. And because he thinks that M&Ms and Skittles taste equally good, he

always puts in exactly 100 bags of M&Ms and 100 bags of Skittles.

In the Medium condition, participants read:

Because Mrs. Miller is so predictable, he likes to be unpredictable. So every year he

has his computer generate two random numbers, each between 91 and 100. The first

number determines how many bags of M&Ms he puts in his pumpkin, and the second

number determines how many bags of Skittles he puts in his pumpkin.

In the Large condition, the text was the same as in Medium, except that the random

generator outputs two numbers between 1 and 100, so that in a given year Mr. Miller’s

pumpkin can contain anywhere between 1 and 100 of bags Skittles and 1 and 100 bags

of M&Ms.
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Participants were then told that on one Halloween night, a group of kids arrives at the

Miller’s door; their son opens the door and randomly selects one of the two pumpkins,

from which the kids are allowed to pick bags of candies at random. In total, the kids get

99 bags of M&Ms and 99 bags of Skittles.

Participants were then asked to choose between two hypotheses—that “the kids picked

their candies from Mrs. Miller’s pumpkin” (H1) or that “the kids picked their candies

from Mr. Miller’s pumpkin” (H2), following the same procedure as Experiment 1 (see

Table 1). Participants were also asked to provide a justification for their hypothesis

choice.

As in Experiment 1, the flexibility of H1 remains constant across all three parameter

conditions, whereas the flexibility of H2 increases across the parameter conditions along

two dimensions. First, H2 contains two extra free parameters in the Medium and Large

conditions compared to the No condition, namely the two outputs of the random number

generator. Second, the number of possible values for each parameter increases from Med-

ium to Large, so that H2 is increasingly penalized by the BOR (see Table 4).3 But there

are two salient differences from Experiment 1. First, the likelihoods of the two hypothe-

ses are much more difficult to compute than in Experiment 1: it is unlikely that partici-

pants could effectively “do the math.” Second, in the Medium and Large condition, the

extra flexibility of H2 means that it can be tuned to fit the data better than H1. Indeed,

together with the auxiliary hypothesis that the random generator output 99 twice, the

likelihood of H2 is 1 in both Medium and Large.

3.2. Results and discussion

3.2.1. Comparative strength
A 3 parameter (no, medium, large) 9 2 judgment (explanation, probability) ANOVA

once again revealed a significant main effect of parameter condition on comparative

strength ratings, F(2, 180) = 26.95, p < .001, gp
2 = .236 (see Fig. 2). Post hoc indepen-

dent samples t-tests revealed that as in Experiment 1, judgments of comparative strength

favored H1 significantly more in Large (M = 2.51) than in Medium (M = 3.39), t(108)
=�3.12, p = .002, and No (M = 4.34), t(117)=�7.38, p < .001). In addition, judgments

of comparative strength favored H1 significantly more in Medium than in No, t(129)
=�3.92, p < .001.

The ANOVA on comparative strength ratings revealed no significant main effect of

judgment (p = .321). However, and by contrast to Experiment 1, there was a

Table 4

Likelihood and Likelihood ratios of H1 and H2 as a function of parameter condition in Experiment 2

No Medium Large

H1 H2 H1 H2 H1 H2

Likelihood 0.026 0.5 0.026 0.025 0.026 0.00025

LR(H1, H2) 0.052 1.04 104
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significant interaction between parameter and judgment, F(2, 180) = 3.54, p = .031.

Compared to probability judgments, explanatory judgments penalized the more flexible

hypothesis less in the Medium condition, but more in the Large condition. This raises

the possibility that the effect of flexibility on hypothesis assessment differs signifi-

cantly for explanatory and probabilistic judgments—a possibility worth taking seriously

in light of the fact that systematic deviations between probabilistic and explanatory

judgments have already been documented (Douven & Schupbach, 2015). Nevertheless,

as far as we can see there is no plausible theoretical explanation for why explanatory

and probabilistic judgments should differ in the way observed here: it is hard to see

why explanatory judgments should be less sensitive to flexibility than probabilistic

judgments when the hypothesis is somewhat flexible (as in Medium), but become

more sensitive to flexibility than probability judgments when the hypothesis is very

flexible (as in Large). Moreover, the effect was not observed in Experiment 1. We

are therefore hesitant to draw strong conclusions and think that the issue requires

further investigation.

3.2.2. Justification
Participants’ justifications were coded as in Experiment 1 (average Cohen’s j = .65,

p < .001, for all categories; see Table 3). Only a small percentage (5%) of participants’

justifications were coded as “misunderstood,” and excluding these participants from anal-

ysis did not change the results reported above (except that the parameter 9 judgment

interaction became marginally significant, F(2, 171) = 2.9, p = .058). By comparison to

Experiment 1, a significantly smaller percentage (3.9%) of participants mentioned precise

numbers in their comments, v2(1, N = 358) = 40.89, p < .001, confirming that precise

probabilities were much more difficult to compute in Experiment 2 than in Experiment 1.

As in Experiment 1, only a small number of comments (19) appealed to considerations of

Fig. 2. The effect of parameter condition on judgments of comparative probabilistic and explanatory strength

in Experiment 2.
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flexibility, suggesting that such considerations do not play a reliable role in explicit

reasoning.

Overall, the results of Experiment 2 provided further confirmation that probabilistic

and explanatory judgments are sensitive to the penalty for flexibility induced by the

BOR. In particular, probabilistic and explanatory judgments appropriately penalize a

hypothesis for flexibility even when the flexibility of the hypothesis means that it can be

“tuned” to fit the data better than a less flexible hypothesis, and when the relevant proba-

bilities are difficult to compute. Moreover, the explanatory and probabilistic judgments

both show this penalty for flexibility.

4. General discussion

Our two experiments provide evidence that people’s intuitive judgments follow the

prescriptions of BOR, whether making estimates of the probability of a hypothesis or

evaluating how well the hypothesis explains the data. In particular, people’s judgments

are consistent with the two most distinctive characteristics of BOR: They penalize

hypotheses as a function of their flexibility (which is determined not only by the number

of free parameters but also by the size of the parameter space), and they penalize those

hypotheses even when their parameters can be “tuned” to fit the data better than compara-

tively simpler hypotheses.

Our results go beyond previous demonstrations of an intuitive preference for simpler

hypotheses. Prior work has shown that people do seem to favor explanations that are sim-

pler in that they involve fewer independent assumptions (Lombrozo, 2007, 2016; Read &

Marcus-Newhall, 1993) or “root causes” (Pacer & Lombrozo, in press), and that this

could reflect a preference built into the prior probabilities assigned to hypotheses in a

given domain. However, these studies do not test the idea that a preference for simplicity

results from the mechanics of Bayesian inference itself; in fact, the preference for “root

simplicity” manifests itself as a preference for the root-simpler explanation when this

choice is not warranted by an application of Bayes’ rule using the probabilistic informa-

tion provided in the task. Our results instead show that people’s intuitive judgments are

sensitive to a different form of simplicity (inflexibility), in a way that is perfectly consis-

tent with the verdicts of the Bayesian account of inference.

Our results also go beyond previous demonstrations that people’s preference for sim-

plicity can in certain cases be explained along Bayesian lines. For instance, Tenenbaum

and Griffiths (2003) show that people’s causal inferences exhibit a preference for sim-

pler hypotheses, where this preference can be readily explained in Bayesian terms. But

the version of Occam’s razor they are concerned with does not penalize hypotheses for

their flexibility (i.e., their ability to accommodate a wide range of possible data);

instead, it penalizes hypotheses that posit more causes than are necessary to explain the

actual data. In addition, there is evidence that people follow a “size principle” when

engaging in generalization and rule-learning tasks (e.g., Tenenbaum & Griffiths, 2001):

among all the hypotheses consistent with the observed stimuli, people tend to prefer
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more specific hypotheses to more general alternatives. For instance, if the observed

stimuli consist of Siamese cats who have a certain property P, people tend to prefer the

hypothesis “All Siamese cats have P” to the more general hypothesis “All cats have P.”

As Tenenbaum and Griffiths argue, this behavior can be explained in Bayesian terms,

as more specific hypotheses tend to have higher likelihoods on the observed data than

more general hypotheses. Yet, here again, this penalty is not a penalty for flexibility.
More general hypotheses (in the sense of “generality” at work in the size principle) are

not more flexible than less general ones: They do not contain more free parameters,

and thus cannot be made to accommodate a wider range of possible data. Finally, there

is also evidence that people’s priors tend to favor hypotheses that posit a small number

of strong causes (Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008; Powell et al., 2016).

Yet, in this case, the preference for simplicity is built into the priors (see also Lom-

brozo, 2007); our results instead suggest that a preference for simpler hypotheses can

emerge as a consequence of the Bayesian preference for hypotheses with higher

likelihoods.

A potential limitation of the present studies is that in both experiments, evaluating the

relative flexibility of the competing hypotheses was relatively straightforward. The rival

hypotheses had similar forms, posited the same kind of mechanism to explain the data,

and were explicitly presented with the information required to evaluate both the size of

the relevant parameter spaces and the prior probability distributions over them. In other

contexts, comparative judgments of flexibility may be more complex or indirect. For

instance, when competing hypotheses posit very different causal mechanisms or entities

to explain the data, participants may rely on more heuristic guides to relative flexibility.

The literature on model selection in cognitive psychology illustrates some of these chal-

lenges: When comparing competing theories of a psychological phenomenon—such as

theories of information integration (Myung & Pitt, 1997) or theories of decision-making

under uncertainty (Gl€ockner & Pachur, 2012)—in a way that takes flexibility into

account, counting the number of parameters contained in each theory often requires turn-

ing each of them into a precise mathematical model. Whether and how judgments of

probability and explanation quality are sensitive to BOR-driven considerations in contexts

where flexibility assessments are less straightforward is an important topic for further

investigation.

In our view, the main interest of our results is their relevance to an important issue

about the status of explanatory considerations in reasoning. There is considerable evi-

dence that explanatory considerations—and especially considerations of simplicity—play

a central role in learning and inference (Lombrozo, 2016). Why is this the case? A simi-

lar normative question arises in the philosophy of science, where one popular answer is

that the rational bearing of explanatory virtues (and in particular simplicity) on inference

is a straightforward consequence of Bayesianism itself (Henderson, 2014; Myrvold,

2003). Our results suggest that this may be partially true at the descriptive level as well.

That is, people’s preference for simpler hypotheses may in part be a natural consequence

of the fact that their judgments approximate Bayesian inference—although it is unlikely
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that all effects of explanatory considerations in reasoning can be explained in this way

(Douven & Schupbach, 2015).
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Notes

1. Note that a definite likelihood for a hypothesis containing free parameters can be

calculated only given a prior probability distribution over the space of possible

parameter settings. In some cases it may be unclear what the right probability dis-

tribution over the parameter space actually is. However, in all the cases considered

in this paper, the probability distribution over the parameter space is explicitly

stipulated.

2. It is worth asking how H1 and H2 fare under other criteria for hypothesis selection,

such as AIC and BIC, which also penalize hypotheses as a function of their flexi-

bility. Two remarks are in order here. First, AIC and BIC were originally devel-

oped as solutions to a very specific hypothesis selection problem—the “curve-

fitting” problem. Because the problem presented to participants differs in important

ways from the curve-fitting problem, applying AIC or BIC to the case of H1 and

H2 is not entirely straightforward. (Note also that while BIC, like the BOR, is con-

cerned with likelihood—both embody the idea that ceteris paribus more flexible

hypotheses make the actual data less probable—AIC is not concerned with likeli-

hood at all. Instead, AIC embodies the idea that more flexible hypotheses are less

predictively accurate, that is, fare worse at correctly predicting new data drawn

from the same underlying distribution.) Second, as we noted in the Introduction,

AIC and BIC penalize hypotheses solely as a function of the number of free

parameters that they contain, and they are insensitive to the size of the parameter

space. (In contexts in which AIC and BIC are usually applied, such as the curve-fit-

ting problem, issues of parameter space size do not arise, as all the parameters

under consideration can take continuously many values.) This means that insofar as

they can be coherently applied to the case at hand, AIC and BIC penalize H2 more

in Medium and Large than in No, but do not penalize it more in Large than Med-

ium, since H2 has the same number of free parameters in both conditions. Thus,

AIC and BIC do not predict a larger preference for H1 in Large than in Medium.

3. Because H2 has the same number of free parameters in both Medium and Large,

AIC and BIC do not penalize the hypothesis more in the latter than in the former

(insofar as they can be coherently applied to the case), mirroring Experiment 1.
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